Blockade of Kv1.3 K(+) channels in T cells is a promising therapeutic approach for the treatment of autoimmune diseases such as multiple sclerosis and type 1 diabetes mellitus. Vm24 (α-KTx 23.
View Article and Find Full Text PDFModulation of the expression and activity of plasma membrane ion channels is one of the mechanisms by which immune cells can regulate their intracellular Ca(2+) signaling pathways required for proliferation and/or differentiation. Voltage-gated K+ channels, inwardly rectifying K+ channels, and Ca(2+)-activated K+ channels have been described to play a major role in controlling the membrane potential in lymphocytes and professional APCs, such as monocytes, macrophages, and dendritic cells (DCs). Our study aimed at the characterization and identification of ion channels expressed in the course of human DC differentiation from monocytes.
View Article and Find Full Text PDFUsing high-performance liquid chromatography Tst26, a novel potassium channel blocker peptide, was purified from the venom of the Brazilian scorpion Tityus stigmurus. Its primary structure was determined by means of automatic Edman degradation and mass spectrometry analysis. The peptide is composed of 37 amino acid residues and tightly folded through three disulfide bridges, similar to other K(+) channel blocking peptides purified from scorpion venoms.
View Article and Find Full Text PDFA novel potassium channel blocker peptide was purified from the venom of the scorpion Centruroides suffusus suffusus by high-performance liquid chromatography and its amino acid sequence was completed by Edman degradation and mass spectrometry analysis. It contains 38 amino acid residues with a molecular weight of 4000.3Da, tightly folded by three disulfide bridges.
View Article and Find Full Text PDFThe Kv1.3 channel inactivates via the P/C-type mechanism, which is influenced by a histidine residue in the pore region (H399, equivalent of Shaker 449). Previously we showed that the electric field of the protonated histidines at low extracellular pH (pHe) creates a potential barrier for K+ ions just outside the pore that hinders their exit from the binding site controlling inactivation (control site) thereby slowing inactivation kinetics.
View Article and Find Full Text PDFIon channels are ubiquitous transmembrane proteins that are involved in a wide variety of cellular functions by selectively controlling the passage of ions across the plasma membrane. Among these functions many immune processes, including those in autoimmune reactions, also rely on the operation of ion channels, but the roles of ion channels can be very diverse. Here the participation of ion channels in three different roles in autoimmune processes is discussed: 1.
View Article and Find Full Text PDFPotassium (K(+)) channels of human peripheral lymphocytes play a considerable role in the signalling processes required for immune responses. Modification of the fatty acid composition of the membrane influences the functions of various membrane enzymes and ion channels. We set out to establish how the incorporation of fatty acids with different carbon chain lengths and degrees of unsaturation into the cell membrane influences the function of K(V)1.
View Article and Find Full Text PDFBackground: The photobleaching fluorescence resonance energy transfer (pbFRET) technique is a spectroscopic method to measure proximity relations between fluorescently labeled macromolecules using digital imaging microscopy. To calculate the energy transfer values one has to determine the bleaching time constants in pixel-by-pixel fashion from the image series recorded on the donor-only and donor and acceptor double-labeled samples. Because of the large number of pixels and the time-consuming calculations, this procedure should be assisted by powerful image data processing software.
View Article and Find Full Text PDFFrom the venom of the Mexican scorpion Centruroides elegans Thorell five peptides were isolated to homogeneity by chromatographic procedures and their full amino acid sequence was determined by automatic Edman degradation. They all belong to the Noxiustoxin subfamily of scorpion toxins and were given the systematic names alpha-KTx 2.8 to 2.
View Article and Find Full Text PDFFluorescence energy homotransfer offers a powerful tool for the investigation of the state of oligomerization of cell surface receptors on a cell-by-cell basis by measuring the polarized components of fluorescence intensity of cells labeled with fluorescently stained antibodies. Here we describe homotransfer-based methods for the flow cytometric detection and analysis of hetero- and homo-associations of cell surface receptors. Homotransfer efficiencies for two- and three-body energy transfer interactions are defined and their frequency distribution curves are computed from the fluorescence anisotropy distributions of multiple-labeled cells.
View Article and Find Full Text PDFThe physiological function of T lymphocytes can be modulated selectively by peptide toxins acting on Kv1.3 K(+) channels. Because Kv1.
View Article and Find Full Text PDFMembrane topology of receptors plays an important role in shaping transmembrane signalling of cells. Among the methods used for characterizing receptor clusters, fluorescence resonance energy transfer between a donor and acceptor fluorophore plays a unique role based on its capability of detecting molecular level (2-10 nm) proximities of receptors in physiological conditions. Recent development of biotechnology has made possible the usage of colloidal gold particles in a large size range for specific labelling of cells for the purposes of electron microscopy.
View Article and Find Full Text PDFGold nanoparticles of 30 nm diameter bound to cell-surface receptor major histocompatibility complex glycoproteins (MHCI and MHCII), interleukin-2 receptor alpha subunit (IL-2Ralpha), very late antigen-4 (VLA-4) integrin, transferrin receptor, and the receptor-type protein tyrosin phosphatase CD45 are shown by the patch-clamp technique to selectively modulate binding characteristics of Pi(2) toxin, an efficient blocker of K(v)1.3 channels. After correlating the electrophysiological data with those on the underlying receptor clusters obtained by simultaneously conducted flow cytometric energy transfer measurements, the modulation was proved to be sensitive to the density and size of the receptor clusters, and to the locations of the receptors as well.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2004
The determination of fluorescence resonance energy transfer (FRET) with flow cytometry (FCET) is one of the most efficient tools to study the proximity relationships of cell membrane components in cell populations on a cell-by-cell basis. Because of the high amount of data and the relatively tedious calculations, this procedure should be assisted by powerful data processing software. The currently available programs are not able to fulfill this requirement.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2004
The Kv1.3 K(+) channel lacks N-type inactivation, but during prolonged depolarized periods it inactivates via the slow (P/C type) mechanism. It bears a titratable histidine residue in position 399 (equivalent of Shaker 449), a site known to influence the rate of slow inactivation.
View Article and Find Full Text PDFThe ion channels expressed by T lymphocytes play key roles in the control of the membrane potential and calcium signaling, thereby affecting signal transduction pathways that lead to the activation of these cells following antigenic stimulation. Disruption of these pathways can attenuate or prevent the response of T-cells to antigenic challenge resulting in immune suppression. Studies using ion channel blockers of high affinity and specificity have shown that this interference can be achieved at the level of ion channels.
View Article and Find Full Text PDFAdenosine receptors are expressed in various mammalian tissues where they mediate the effects of adenosine on cellular functions through a number of signalling mechanisms. 18F-NECA is the positron-emitting derivative of the A(2)-receptor agonist NECA (5'-n-ethyl-carboxamidoadenosine) and is a radioligand for PET imaging of adenosine receptors. Contractility and relaxation studies were performed on guinea pig atrial myocardium, pulmonary artery, and thoracic aorta to compare the pharmacological effects of NECA and F-NECA (a non-emitting derivative) on tissues.
View Article and Find Full Text PDFThe stiffness of the outer hair cell (OHC) lateral wall, measured by the micropipette aspiration technique, is non-linear, decreasing from the ciliary pole (stiffness parameter Sp 1.83+/-0.13 nN/microm n=10) towards the cell base (Sp 1.
View Article and Find Full Text PDFThe Kv1.3 potassium channel that belongs to the Shaker family of voltage-gated K(+) channels plays a crucial role in the mitogenic response of T cells. Because it spans the cell membrane its function can be influenced by lipid-protein interactions.
View Article and Find Full Text PDFSubclasses of cells in different compartments of the immune system possesses all those attributes, that make them suitable though somewhat limited models for the investigation of cellular processes during aging. Blood samples provide relative easily high amount of cells belonging to the same subclass, all of them having complex cascade processes in their signal transduction mechanisms, therefore being excellent targets for such investigations. One such subclass comprises peripheral blood lymphocytes.
View Article and Find Full Text PDFTwo novel toxic peptides (Tc30 and Tc32) were isolated and characterized from the venom of the Brazilian scorpion Tityus cambridgei. The first have 37 and the second 35 amino acid residues, with molecular masses of 3,871.8 and 3,521.
View Article and Find Full Text PDFAdenosine receptors are widely distributed in mammalian tissues and have been possibly involved through transmembrane potential changes in cell function regulation. The effect of A1 and A2A adenosine receptor ligands on transmembrane potential measured with flow cytometry and potassium conductance measured by the patch-clamp technique was investigated in DDT1 MF-2 smooth muscle cells. The A1 adenosine-receptor agonist CPA (50 nM) and the A2A adenosine-receptor agonist CGS 21680 (50 nM) elicited a rapid and maintained increase and decrease in the potassium conductance, respectively, and a concomitant hyperpolarization and depolarization of the membrane, respectively.
View Article and Find Full Text PDFA theoretical analysis of experimental data is presented in this mini-review on non-random homo- and hetero-associations of cell surface receptors, which can be recruited in the plasma membrane or at the surface of the rough endoplasmic reticulum during the protein synthesis. In the latter case, the likely genetic origin of these supramolecular formations is analyzed, contrasting this concept to the mobility of the cell surface proteins. A model is offered which, on the one hand, allows the mobility in a restricted way even among microdomain-confined receptor proteins through 'swapping partners'.
View Article and Find Full Text PDF