Publications by authors named "Reznik D"

The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown.

View Article and Find Full Text PDF

Histidine dipeptides (HDs) are synthesized in brain oligodendrocytes by carnosine synthase (carns1), but their role is unknown. Using metabolomics and in vivo experiments with both constitutive and oligodendrocyte-selective carns1-KO mouse models, we found that HDs are critical for oligodendrocyte survival and protect against oxidative stress. Carns1-KO mouse models had lower numbers of mature oligodendrocytes, increased lipid peroxidation, and behavioral changes.

View Article and Find Full Text PDF

In the entorhinal cortex (EC), attempts have been made to identify the human homologue regions of the medial (MEC) and lateral (LEC) subregions using either functional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI). However, there are still discrepancies between entorhinal subdivisions depending on the choice of connectivity seed regions and the imaging modality used. While DTI can be used to follow the white matter tracts of the brain, fMRI can identify functionally connected brain regions.

View Article and Find Full Text PDF

Goal-directed actions are performed in order to attain certain sensory consequences in the world. However, expected attributes of these consequences can affect the kinetics of the action. In a set of three studies (n = 120), we examined how expected attributes of stimulus outcome (intensity) shape the kinetics of the triggering action (applied force), even when the action kinetic and attribute are independent.

View Article and Find Full Text PDF

Computational phenotyping has emerged as a powerful tool for characterizing individual variability across a variety of cognitive domains. An individual's computational phenotype is defined as a set of mechanistically interpretable parameters obtained from fitting computational models to behavioural data. However, the interpretation of these parameters hinges critically on their psychometric properties, which are rarely studied.

View Article and Find Full Text PDF

Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF.

View Article and Find Full Text PDF

Previous studies in mice have utilized Magel2 gene deletion models to examine the consequences of its absence. We report the generation, molecular validation and phenotypic characterization of a novel rat model with a truncating Magel2 mutation modeling variants associated with Schaaf-Yang syndrome-causing mutations. Within the hypothalamus, a brain region in which human MAGEL2 is paternally expressed, we demonstrated, at the level of transcript and peptide detection, that rat Magel2 exhibits a paternal, parent-of-origin effect.

View Article and Find Full Text PDF

Electron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order.

View Article and Find Full Text PDF

Aim: Infants with biliary atresia (BA) generally have chronic malnutrition. However, the best anthropometric measure to assess malnutrition and its correlation with disease severity is unknown. We aimed to assess correlations of various anthropometric measurements, including air displacement plethysmography (ADP), with laboratory parameters and with the pediatric end-stage liver disease (PELD) score in infants with BA.

View Article and Find Full Text PDF

Background: Methodologically rigorous studies on Covid-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection are critically needed to inform national and global policy on Covid-19 vaccine use. In Israel, healthcare personnel (HCP) were initially prioritized for Covid-19 vaccination, creating an ideal setting to evaluate early real-world VE in a closely monitored population.

Methods: We conducted a prospective study among HCP in 6 hospitals to estimate the effectiveness of the BNT162b2 mRNA Covid-19 vaccine in preventing SARS-CoV-2 infection.

View Article and Find Full Text PDF

Sensory perception is a product of interactions between the internal state of an organism and the physical attributes of a stimulus. It has been shown across the animal kingdom that perception and sensory-evoked physiological responses are modulated depending on whether or not the stimulus is the consequence of voluntary actions. These phenomena are often attributed to motor signals sent to relevant sensory regions that convey information about upcoming sensory consequences.

View Article and Find Full Text PDF

Aims: Modalities for rehabilitation of the neurologically affected upper-limb (UL) are generally of limited benefit. The majority of patients seriously affected by UL paresis remain with severe motor disability, despite all rehabilitation efforts. Consequently, extensive clinical research is dedicated to develop novel strategies aimed to improve the functional outcome of the affected UL.

View Article and Find Full Text PDF

Doped antiferromagnets host a vast array of physical properties and learning how to control them is one of the biggest challenges of condensed matter physics. [Formula: see text] (LSNO) is a classic example of such a material. At low temperatures holes introduced via substitution of La by Sr segregate into lines to form boundaries between magnetically ordered domains in the form of stripes.

View Article and Find Full Text PDF

Evoked neural activity in sensory regions and perception of sensory stimuli are modulated when the stimuli are the consequence of voluntary movement, as opposed to an external source. It has been suggested that such modulations are due to motor commands that are sent to relevant sensory regions during voluntary movement. However, given the anatomical-functional laterality bias of the motor system, it is plausible that the pattern of such behavioral and neural modulations will also exhibit a similar bias, depending on the effector triggering the stimulus (e.

View Article and Find Full Text PDF

The physics of weak itinerant ferromagnets is challenging due to their small magnetic moments and the ambiguous role of local interactions governing their electronic properties, many of which violate Fermi-liquid theory. While magnetic fluctuations play an important role in the materials' unusual electronic states, the nature of these fluctuations and the paradigms through which they arise remain debated. Here we use inelastic neutron scattering to study magnetic fluctuations in the canonical weak itinerant ferromagnet MnSi.

View Article and Find Full Text PDF

Measurement and control of magnetic order and correlations in real time is a rapidly developing scientific area relevant for magnetic memory and spintronics. In these experiments an ultrashort laser pulse (pump) is first absorbed by excitations carrying electric dipole moment. These then give their energy to the magnetic subsystem monitored by a time-resolved probe.

View Article and Find Full Text PDF

Nematicity is ubiquitous in electronic phases of high-T_{c} superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature-dependent nematic correlation length ξ from the anomalous softening of acoustic phonon modes in FeSe, underdoped Ba(Fe_{0.97}Co_{0.

View Article and Find Full Text PDF

Objectives: Although gluten-free diet (GFD) is the only proven therapy for celiac disease (CD), its effect on cardiovascular disease (CVD) risk factors is still unclear. Our aim was to determine whether adherence to GFD affects CVD risk factors among newly diagnosed pediatric CD subjects.

Methods: We prospectively enrolled pediatric subjects undergoing upper gastrointestinal endoscopy for suspected CD.

View Article and Find Full Text PDF

Behavior is a complex product of interactions between sensory influx arising from the environment and the neural state of the organism. Therefore, identical sensory input can elicit different behavioral responses. Research in recent years has demonstrated that perception is modulated when an organism is engaged in active behavior - suggesting that neural activity in motor pathways is one factor governing the neural state of networks engaged in sensory processing.

View Article and Find Full Text PDF

Self-generated, voluntary actions, are preceded by a slow negativity in the scalp electroencephalography (EEG) signal recorded from frontal regions (termed 'readiness potential'; RP). This signal, and its lateralized subcomponent (LRP), is mainly regarded as preparatory motor activity associated with the forthcoming voluntary motor act. However, it is not clear whether this neural signature is associated with preparatory motor activity, expectation of its associated sensory consequences, or both.

View Article and Find Full Text PDF

Movement is intrinsically linked to perception such that observing an action induces in the observer behavioral changes during execution of similar actions. Electroencephalogram (EEG) studies have revealed that at the group level, action observation suppresses oscillatory power in mu (8-12 Hz) and beta (15-25 Hz) bands over the sensorimotor cortex - a phenomenon associated with increased excitability of cortical neurons. However, it is unclear whether differences in suppression level across individuals is linked with individual differences in subsequent behavioral changes.

View Article and Find Full Text PDF

Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La_{2-x}Sr_{x}NiO_{4}, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature "disordered" state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid.

View Article and Find Full Text PDF

HIV-associated periodontal diseases (PD) could serve as a source of chronic inflammation. Here, we sought to characterize the oral microbial signatures of HIV+ and HIV- individuals at different levels of PD severity.This cross-sectional study included both HIV+ and HIV- patients with varying degrees of PD.

View Article and Find Full Text PDF

Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons.

View Article and Find Full Text PDF

Assessing risk for transmission of a blood-borne pathogen requires the use of the hazard and risk model. Infection control is a system that uses a number of individual processes to eliminate or reduce the probability of a hazard occurring. Strategies employed to reduce risk should be rehearsed, used routinely, audited, reviewed, and the results shared.

View Article and Find Full Text PDF