Image-to-image translation has gained popularity in the medical field to transform images from one domain to another. Medical image synthesis via domain transformation is advantageous in its ability to augment an image dataset where images for a given class are limited. From the learning perspective, this process contributes to the data-oriented robustness of the model by inherently broadening the model's exposure to more diverse visual data and enabling it to learn more generalized features.
View Article and Find Full Text PDFInteract J Med Res
November 2024
Background: Depression is a prevalent global mental health disorder with substantial individual and societal impact. Natural language processing (NLP), a branch of artificial intelligence, offers the potential for improving depression screening by extracting meaningful information from textual data, but there are challenges and ethical considerations.
Objective: This literature review aims to explore existing NLP methods for detecting depression, discuss successes and limitations, address ethical concerns, and highlight potential biases.
Background: The proportion of Canadian youth seeking mental health support from an emergency department (ED) has risen in recent years. As EDs typically address urgent mental health crises, revisiting an ED may represent unmet mental health needs. Accurate ED revisit prediction could aid early intervention and ensure efficient healthcare resource allocation.
View Article and Find Full Text PDFExp Biol Med (Maywood)
December 2023
Bayesian networks are increasingly used to quantify the uncertainty of subjective and stochastic concepts such as trust. In this article, we propose a data-driven approach to estimate Bayesian parameters in the domain of wearable medical devices. Our approach extracts the probability of a trust factor being in a specific state directly from the devices (e.
View Article and Find Full Text PDFThere is growing interest in imputing missing data in tabular datasets using deep learning. Existing deep learning-based imputation models have been commonly evaluated using root mean square error (RMSE) as the predictive accuracy metric. In this article, we investigate the limitations of assessing deep learning-based imputation models by conducting a comparative analysis between RMSE and alternative metrics in the statistical literature including qualitative, predictive accuracy, statistical distance, and descriptive statistics.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
July 2019
There has been increased effort to understand the neurophysiological effects of concussion aimed to move diagnosis and identification beyond current subjective behavioral assessments that suffer from poor sensitivity. Recent evidence suggests that event-related potentials (ERPs) measured with electroencephalography (EEG) are persistent neurophysiological markers of past concussions. However, as such evidence is limited to group-level analyzes, the extent to which they enable concussion detection at the individual-level is unclear.
View Article and Find Full Text PDFSeveral regulatory bodies have agreed that low-dose radiation used in medical imaging is a weak carcinogen that follows a linear, non-threshold model of cancer risk. While avoiding radiation is the best course of action to mitigate risk, computed tomography (CT) scans are often critical for diagnosis. In addition to the as low as reasonably achievable principle, a more concrete method of dose reduction for common CT imaging exams is the use of a diagnostic reference level (DRL).
View Article and Find Full Text PDFMachine learning-based patient monitoring systems are generally deployed on remote servers for analyzing heterogeneous data. While recent advances in mobile technology provide new opportunities to deploy such systems directly on mobile devices, the development and deployment challenges are not being extensively studied by the research community. In this paper, we systematically investigate challenges associated with each stage of the development and deployment of a machine learning-based patient monitoring system on a mobile device.
View Article and Find Full Text PDF