In this study, polyamide 6 (PA) is blended with ethylene vinyl alcohol (EVOH) to yield packaging materials with a balance of mechanical and gas barrier properties. However, the formation of gel-like structures in both polymers because of thermal degradation at high temperatures leads to a processing challenge, particularly during thin-gauge film extrusion. To address this challenge, nanoclays are introduced either directly or via a masterbatch of maleic-anhydride-grafted polypropylene to the PA/EVOH blend and time-resolved rheometry is used to study the effect of different modes of nanoclay incorporation on the kinetics of thermo-oxidative degradation of PA/EVOH blend and its nanocomposites.
View Article and Find Full Text PDFIn this study, small amplitude oscillatory shear tests are applied to investigate the rheological responses of polylactide/poly(vinylidene fluoride) (PLA/PVDF) blends and to correlate their viscoelastic properties with the morphological evolutions during processing. Although the analysis of the elastic moduli reveals some changes as a function of blend composition and processing time, the weighted relaxation spectra are shown to be more useful in detecting changes. The analysis demonstrates that when PVDF, i.
View Article and Find Full Text PDFThe present work investigates the distribution of nanoclay particles at the interface and their influence on the microstructure development and non-linear rheological properties of reactively processed biodegradable polylactide/poly(butylene succinate) blend nanocomposites. Two types of organoclays, one is more hydrophilic (Cloisite30B (C30B)) and another one is more hydrophobic (Betsopa (BET)), were used at different concentrations. Surface and transmission electron microscopies were respectively used to study the blend morphology evolution and for probing the dispersion and distribution of nanoclay platelets within the blend matrix and at the interface.
View Article and Find Full Text PDF