The very first microfluidic device used for the production of (18)F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [(18)F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly.
View Article and Find Full Text PDFWe report an automated synthesis of [(18)F]-FMISO utilizing a prototype microfluidic radiochemistry module. The instrument allows for production of the tracer with 58%±2% (11 runs) decay corrected yield. Total time of production, including synthesis and purification averages 60 min.
View Article and Find Full Text PDFWe present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques.
View Article and Find Full Text PDFHypoxia in solid tumours is associated with the promotion of various metabolic mechanisms and induces resistance to radio- and chemotherapy. Non-invasive positron emission tomography (PET) or single photon emission computed tomography by use of selective biomarkers has emerged as valuable tools for the detection of hypoxic areas within tumours so treatment can be modified accordingly. The aim of this investigation was to evaluate [(18)F]3-NTR, a 3-nitro-1,2,4-triazole analogue (N(1) substituted) of [(18)F]FMISO as a potential hypoxia selective tracer.
View Article and Find Full Text PDFCurrent theories of voice production depend critically upon knowledge of the near field flow which emanates from the glottis. While most modern theories predict complex, three-dimensional structures in the near field flow, few investigations have attempted to quantify such structures. Using methods of flow visualization and digital particle image velocimetry, this study measured the near field flow structures immediately downstream of a self-oscillating, physical model of the vocal folds, with a vocal tract attached.
View Article and Find Full Text PDFInsoluble monolayers on water have been patterned at the macroscopic scale (i.e., at the centimeter scale of the flow apparatus) as well as the mesoscopic scale (i.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2002
Interfacial velocity measurements were performed in an optical annular channel, consisting of stationary inner and outer cylinders, a floor rotating at a constant rate, and a flat free surface on which an insoluble monolayer was initially spread. Measurements for essentially inviscid monolayers and some viscous monolayers on water show good agreement with numerical predictions for a Newtonian interface (Boussinesq-Scriven surface model) coupled to a bulk flow described by the Navier-Stokes equations. Here, we consider in detail a viscous monolayer, namely hemicyanine, and find that above a certain concentration, the monolayer does not behave Newtonian at a Reynolds number of about 250.
View Article and Find Full Text PDF