Publications by authors named "Reza Khazaeinezhad"

Background And Objectives: Femtosecond laser trabeculotomy (FLT) creates aqueous humor outflow channels through the trabecular meshwork (TM) and is an emerging noninvasive treatment for open-angle glaucoma. The purpose of this study is to investigate the effect of pulse energy on outflow channel creation during FLT.

Materials And Methods: An FLT laser (ViaLase Inc.

View Article and Find Full Text PDF

Using aqueous precursors, we report successfully fabricating thin-solid films of two nucleic acids, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). We investigated the potential of these films deposited on a fiber optic platform as all-fiber integrated saturable absorbers (SAs) for ultrafast nonlinear optics. RNA-SA performances were comparable to those of DNA-SA in terms of its nonlinear transmission, modulation depth, and saturation intensity.

View Article and Find Full Text PDF

Iridocorneal angle (ICA) details particularly the trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CCs) play crucial roles in the regulation of the aqueous outflow in the eyes and are closely associated with glaucoma. Current clinical gonioscopy imaging provides no depth information, and studies of 3D high-resolution optical coherence tomography (OCT) imaging of these structures are limited. We developed a custom-built spectral-domain (SD-) OCT imaging system to fully characterize the angle details.

View Article and Find Full Text PDF

Periodontitis is a public issue and imaging periodontal pocket is important to evaluate periodontitis. Regular linear transducers have limitations in imaging the posterior teeth due to their geometry restrictions. Here we characterized a transducer that can image the posterior teeth including assessment of periodontal pockets a combination of photoacoustic and ultrasound imaging.

View Article and Find Full Text PDF

Objective: To customize a miniaturized ultrasound transducer to access full-mouth B-mode, color Doppler, and spectral Doppler imaging for monitoring oral health.

Methods: A customized periodontal ultrasound transducer SS-19-128 (19 MHz, 128 channels) 1.8-cm wide and 1-cm thick was developed and connected to a data acquisition (DAQ) system.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate femtosecond laser trabeculotomy (FLT) in a clinically relevant manner (i.e., delivering the surgical laser beam through the cornea of the intact, human anterior segment to create channels from the anterior chamber into the Schlemm's canal) and to investigate the effect of this treatment on intraocular pressure in perfused human anterior segments.

View Article and Find Full Text PDF

Purpose: This study investigated the initial feasibility of using femtosecond laser trabeculotomy (FLT) to create open channels through the trabecular meshwork into Schlemm's canal to lower intraocular pressure (IOP) in a perfused anterior segment model.

Methods: Human anterior segments (12 eyes) were assigned to either treatment (n = 6) or sham treatment (n = 6) groups. Both groups were perfused until a baseline IOP was recorded upon which a direct FLT treatment or a sham treatment was administered.

View Article and Find Full Text PDF

Corneal elasticity can resist elastic deformations under intraocular pressure to maintain normal corneal shape, which has a great influence on corneal refractive function. Elastography can measure tissue elasticity and provide a powerful tool for clinical diagnosis. Air-coupled ultrasound optical coherence elastography (OCE) has been used in the quantification of ex-vivo corneal elasticity.

View Article and Find Full Text PDF

A new route to systematically control the optical dispersion properties of surfactant-free deoxyribonucleic acid (DNA) thin solid films was developed by doping them with vitamin B, also known as riboflavin. Surfactant-free DNA solid films of high optical quality were successfully deposited on various types of substrates by spin coating of aqueous solutions without additional chemical processes, with thicknesses ranging from 18 to 100 nm. Optical properties of the DNA films were investigated by measuring UV-visible-NIR transmission, and their refractive indices were measured using variable-angle spectroscopic ellipsometry.

View Article and Find Full Text PDF

We demonstrate a novel high-speed and broadband laser architecture based on stretched pulse active mode locking that provides a wavelength-swept and wavelength-stepped output. The laser utilizes a single intracavity 8.3 meter chirped fiber Bragg grating to generate positive and negative dispersion, and can be operated with or without an intracavity fixed Fabry-Perot etalon to generate wavelength-swept and wavelength-stepped (frequency comb) outputs, respectively.

View Article and Find Full Text PDF

Improving the axial resolution by providing wider bandwidth wavelength swept lasers remains an important issue for optical frequency domain imaging (OFDI). Here, we demonstrate a wide tuning range, all-fiber wavelength swept laser at a center wavelength of 1250 nm by combining two ring cavities that share a single Fabry-Perot tunable filter. The two cavities contain semiconductor optical amplifiers with central wavelengths of 1190 nm and 1292 nm, respectively.

View Article and Find Full Text PDF

A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n exceeding 10 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica.

View Article and Find Full Text PDF

The photocurrent conversions of transition metal dichalcogenide nanosheets are unprecedentedly impressive, making them great candidates for visible range photodetectors. Here we demonstrate a method for fabricating micron-thick, flexible films consisting of a variety of highly separated transition metal dichalcogenide nanosheets for excellent band-selective photodetection. Our method is based on the non-destructive modification of transition metal dichalcogenide sheets with amine-terminated polymers.

View Article and Find Full Text PDF

Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions.

View Article and Find Full Text PDF

Enhanced optical transmission (EOT) and its polarization extinction ratio (PER) of a sub-wavelength polygonal aperture surrounded by polygonal grooves are investigated numerically by finite difference time domain (FDTD) method. Effects of light polarization on EOT were analyzed and compared for four types of geometrical structures: triangle aperture surrounded by triangle grooves, square aperture surrounded by square grooves, rhombus aperture surrounded by rhombus grooves, and pentagon aperture surrounded by pentagon grooves. The effects of relative angles between the symmetry axes of polygons and the light polarization were thoroughly analyzed.

View Article and Find Full Text PDF

We report enhanced optical transmission (EOT) through a hexagonal aperture surrounded by polygonal segmented grooves to explore its unique polarization dependence. Effects of light polarization on EOT through the hexagonal aperture were systematically investigated for three types of grooves: concentric hexagonal grooves, linear segmented grooves and wedge segmented grooves. Significant increase in EOT was observed for the polarization directed along the groove axis compared to the other orthogonal polarization, which can be further applied to polarization dependent photonic devices.

View Article and Find Full Text PDF