After publishing an in-depth study that analyzed the ability of computerized methods to assist or replace human experts in obtaining carotid intima-media thickness (CIMT) measurements leading to correct therapeutic decisions, here the same consortium joined to present technical outlooks on computerized CIMT measurement systems and provide considerations for the community regarding the development and comparison of these methods, including considerations to encourage the standardization of computerized CIMT measurements and results presentation. A multi-center database of 500 images was collected, upon which three manual segmentations and seven computerized methods were employed to measure the CIMT, including traditional methods based on dynamic programming, deformable models, the first order absolute moment, anisotropic Gaussian derivative filters and deep learning-based image processing approaches based on U-Net convolutional neural networks. An inter- and intra-analyst variability analysis was conducted and segmentation results were analyzed by dividing the database based on carotid morphology, image signal-to-noise ratio, and research center.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
January 2021
Purpose: The BIOLUX P-III registry was initiated to further assess the safety and efficacy of the Passeo-18 Lux drug-coated balloon (DCB) in infrainguinal lesions in a real-world environment and in prespecified risk groups.
Materials And Methods: BIOLUX P-III is a prospective, global, all-comers registry with patients treated under real-world conditions. We herein report 24-month results of the prespecified subgroup of 151 patients with 185 below-the-knee (BTK) lesions.
Objectives: The aim of the BIOLUX P-III (A Prospective, International, Multi-Centre, Post-Market All-Comers Registry to Assess the Clinical Performance of the Passeo-18 Lux Paclitaxel Releasing Balloon Catheter in Infrainguinal Arteries - III) registry was to collect real-world data on the Passeo-18 Lux paclitaxel-coated balloon.
Background: Critical limb ischemia (CLI) is a severe condition associated with high morbidity and mortality. Prospective data are needed to provide further insights on drug-eluting devices.
Minimally invasive treatment of vascular disease demands dynamic navigation through complex blood vessel pathways and accurate placement of an interventional device, which has resulted in increased reliance on fluoroscopic guidance and commensurate radiation exposure to the patient and staff. Here we introduce a guidance system inspired by electric fish that incorporates measurements from a newly designed electrogenic sensory catheter with preoperative imaging to provide continuous feedback to guide vascular procedures without additional contrast injection, radiation, image registration, or external tracking. Electrodes near the catheter tip simultaneously create a weak electric field and measure the impedance, which changes with the internal geometry of the vessel as the catheter advances through the vasculature.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2015
Purpose: The continuous integration of innovative imaging modalities into conventional vascular surgery rooms has led to an urgent need for computer assistance solutions that support the smooth integration of imaging within the surgical workflow. In particular, endovascular interventions performed under 2D fluoroscopic or angiographic imaging only, require reliable and fast navigation support for complex treatment procedures such as endovascular aortic repair. Despite the vast variety of image-based guide wire and catheter tracking methods, an adoption of these for detecting and tracking the stent graft delivery device is not possible due to its special geometry and intensity appearance.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2015
We present the idea of a user interface concept, which resolves the challenges involved in the control of angiographic C-arms for their constant repositioning during interventions by either the surgeons or the surgical staff. Our aim is to shift the paradigm of interventional image acquisition workflow from the traditional control device interfaces to 'desired-view' control. This allows the physicians to only communicate the desired outcome of imaging, based on simulated X-rays from pre-operative CT or CTA data, while the system takes care of computing the positioning of the imaging device relative to the patient's anatomy through inverse kinematics and CT to patient registration.
View Article and Find Full Text PDFIn the current clinical workflow of endovascular abdominal aortic repairs (EVAR) a stent graft is inserted into the aneurysmatic aorta under 2D angiographic imaging. Due to the missing depth information in the X-ray visualization, it is highly difficult in particular for junior physicians to place the stent graft in the preoperatively defined position within the aorta. Therefore, advanced 3D visualization of stent grafts is highly required.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2010
In the last decade the use of interventional X-ray imaging, especially for fluoroscopy-guided procedures, has increased dramatically. Due to this the radiation exposure of the medical staff has also increased. Although radiation protection measures such as lead vests are used there are still unprotected regions, most notably the hands and the head.
View Article and Find Full Text PDF