The use of drug delivery systems in targeting and achieving the targeting of drugs in treating diseases, especially cancer, has attracted the attention of researchers. Letrozole is one of the drugs for the treatment of breast cancer. In this study, the organic-metallic pharmaceutical porous nanostructure based on zirconium UiO-66 loaded letrozole was synthesized.
View Article and Find Full Text PDFImproving the quality of electronic services (e-services) is essential when dealing with unforeseen factors and uncertainties in healthcare, such as the outbreak of coronavirus (COVID-19) and changes in the needs and expectations of patients. This paper presents a comprehensive conceptual model in healthcare systems for improving the user acceptance of e-services. A model referred to as the technology acceptance model (TAM) is considered that includes several factors.
View Article and Find Full Text PDFPhysico-chemical characteristics of the CoCrMo degradation products have played an important role in cytotoxicity and clinical complications on the orthopedic patients who have metal implants. Previous studies have limited reflection on the physicochemical characteristics of the degradation products generated in vivo, which are very different from individual metal particles and/or ions obtained from different commercial sources. In this study, we aimed to understand the differences in toxicity induced by the degradation products in as-synthesized form as well as those obtained after post-processing.
View Article and Find Full Text PDFWhile titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells.
View Article and Find Full Text PDF