In this study, the sequential extraction of the three types of biochemicals from microalgae is employed, which is a more realistic and practical solution for large-scale extraction of bioproducts. The drying, grinding, organic solvent treatment, and ultra-sonication were combined to disrupt cells and sequentially extract bioproducts from three microalgae strains, Chlorella sorokiniana IG-W-96, Chlorella sp. PG-96, and Chlorella vulgaris IG-R-96.
View Article and Find Full Text PDFThe biodesulfurization activity of bacteria through the 4S pathway in aqueous-oil emulsions is affected by various operational factors. These factors also demonstrate interacting effects that influence the potential for field applications of biodesulfurization technology and can solely be deciphered through multi-variable experiments. In this study, the effects of the influential factors and their interactions on the desulfurizing activity of a newly identified desulfurizing bacterium, Rhodococcus sp, FUM94 were quantitatively investigated.
View Article and Find Full Text PDFBiodiesel, as a renewable and eco-friendly energy source that can be produced through algae oil esterification, has recently received much attention. Maximization of algal biomass and lipid content is crucial for commercial biodiesel production. In this study, Chlorella sp.
View Article and Find Full Text PDFPrevious researches have emphasized on suitability of decellularized tissues for regenerative applications. The decellularization of cartilage tissue has always been a challenge as the final product must be balanced in both immunogenic residue and mechanical properties. This study was designed to compare and optimize the efficacy of the most common chemical decellularization treatments on articular cartilage.
View Article and Find Full Text PDFBiodesulfurization (BDS) is an environmentally friendly desulfurizing process with the potential of replacing or adding to the current expensive technologies for sulfur removal from fossil fuels. The BDS, however, still suffers from low biocatalyst activity. One reason is repression of promoter transcription in presence of inorganic sulfate that impedes translation of Dsz enzymes required for desulfurization pathway.
View Article and Find Full Text PDFThe original version of this article unfortunately contained a mistake in the caption of Figs. 5 and 6.
View Article and Find Full Text PDFNumerous desulfurizing bacteria from the Rhodococcus genus harbor conserved dsz genes responsible for the degradation of sulfur compounds through 4S pathway. This study describes a newly identified desulfurizing bacterium, Rhodococcus sp. FUM94, which unlike previously identified strains encodes a truncated dsz operon.
View Article and Find Full Text PDFAn optimized scaffold with adaptable architectural and biochemical properties is a goal for articular cartilage (AC) repair. A mechanically enhanced decellularized AC can be an optimistic ECM-derived scaffold. In this study, reinforced decellularized bovine AC was evaluated as a potential scaffold for cartilage repair applications.
View Article and Find Full Text PDF