Publications by authors named "Reza Ghasemi-Fasaei"

Visible and near-infrared (Vis-NIR) reflectance spectroscopy has recently emerged as an efficient and cost-effective tool for monitoring soil parameters and provides an extensive array of measurements swiftly. This study sought to predict fundamental biological attributes of calcareous soils using spectral reflectance data in the Vis-NIR range through the application of partial least square regression (PLSR) and stepwise multiple linear regression (SMLR) techniques. The objective was to derive spectrotransfer functions (STFs) to predict selected soil biological attributes.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are structures with high surface area that can be used to remove heavy metals (HMs) efficiently from the environment. The effect of MOFs on HMs removal from contaminated soils has not been already investigated. Monometallic MOFs are easier to synthesize with high efficiency, and it is also important to compare their structures.

View Article and Find Full Text PDF

Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of () and () bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency.

View Article and Find Full Text PDF

Adsorption process plays an important role in the remediation of heavy metals (HMs) from wastewater. A laboratory trial was conducted to investigate effective parameters for improving the bio-adsorption removal of HMs. SEM, EDX, BET, and FTIR techniques were applied to characterize the calcined layer double hydroxide (Cal-LDH), pectin (PC), and Cal-LDH-PC composite prepared from Licorice pomace.

View Article and Find Full Text PDF

Simultaneous application of modified FeO with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of FeO as adsorbents for heavy metals (HMs) by applying protective coatings.

View Article and Find Full Text PDF

Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated.

View Article and Find Full Text PDF

Mitigation of global climate change by means such as soil carbon (C) sequestration has become an important area of research. Soil organic matter (SOM) that is stabilized with clay minerals is the most persistent in soils. Currently, little is known regarding the C sequestration ability of nanoclay extracted from Vertisols in semi-arid regions.

View Article and Find Full Text PDF

Although assisted phytoremediation using chemical treatments is a suitable technique for the removal of heavy metals (HMs), the estimation of this process using simple models is also crucial. For this purpose, a greenhouse trial was designed to evaluate the effectiveness of citric, oxalic, and tartaric acid on Cd, Pb, Ni, and Zn phytoremediation by maize and sorghum and to estimate this process using sigmoid HMs uptake model. Results showed that mean values of root and shoot dry weight and metals uptake, translocation factor (TF) of Pb and Zn, and uptake efficiency (UE) of Cd in maize were higher than sorghum but the TF of Cd and the phytoextraction efficiency (PEE) and UE of Pb in sorghum were higher than maize.

View Article and Find Full Text PDF

With the continuous growth of industrialization, the presence of heavy metals (HMs) in the environment has become a critical issue, necessitating cost-effective and efficient techniques for their removal. The present study aimed to determine the optimal preparation conditions for synthesizing pectin (PC) as a polymer sorbent, combined with Magnesium (Mg) Aluminum (Al) layered double oxides (LDOs), using a fast and facile co-precipitation method. Both the response surface method (RSM) and the Taguchi method were employed to optimize the influence of key independent variables, including the molar ratio of cations Mg:Al, the ratio of pectin to LDO, and the temperature for removing multiple elements from wastewater.

View Article and Find Full Text PDF

Root-knot nematodes (Meloidogyne spp.) are dangerous parasites of many crops worldwide. The threat of chemical nematicides has led to increasing interest in studying the inhibitory effects of organic amendments and bacteria on plant-parasitic nematodes, but their combination has been less studied.

View Article and Find Full Text PDF

Plants develop several external and internal mechanisms to increase their tolerance to heavy metals (HMs) toxicity including cadmium (Cd). Symbiosis with arbuscular mycorrhizae fungi (AMF) is one of the plants' strategies to tolerate HMs toxicity. Nitric oxide (NO), as a signaling molecule, is also involved in physiological responses of plants to various stresses.

View Article and Find Full Text PDF

Wastewater contains organic compounds, including dyes, which have potential risks to the environment. Hence, these compound needs to be eliminated from the aqueous solution. In the present study, chitosan-pectin composite (Cs-Pc) was used as an adsorbent to remove methylene blue dye (MB) from synthetic wastewater.

View Article and Find Full Text PDF

Green synthesis is a clean and eco-friendly process in which metal nanoparticles can be produced by the reaction between a metal salt solution and plant organ extract. In the present study, three copper oxide nanoparticles were green synthesized from the leaf extracts of astragalus rosemary and mallow as predominant plant cover in the study area was characterized. The effectiveness of three green synthesized nanoparticles in the adsorption of lead ions from polluted water was studied.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO-NPs) are among the most commonly used nano-fertilizers (NF). However, elevated levels of ZnO-NPs in soil may affect plant growth and development due to its potential toxicity when accumulated in large amounts in plant tissues. This research was conducted using an in situ rhizobox system with the aims of evaluating zinc uptake from nano-zinc oxide amended rhizosphere soil by alfalfa plant and the effect of plant growth-promoting microorganisms on alleviating the phytotoxicity of ZnO-NPs.

View Article and Find Full Text PDF

Phytoremediation is an appropriate technology used to remove pollutants from environment components. A greenhouse trial was conducted to test the hypothesis that application of surfactant levels and inoculation with Pseudomonas fluorescens bacterium and/or Piriformospora indica fungus enhances the phytoremediation of cadmium (Cd). Maize seeds were sown in Cd-polluted soil, and after 2 months Cd status in plant tissues and Cd phytoremediation criteria was determined.

View Article and Find Full Text PDF

Petroleum is one of the critical environmental pollutants. can grow in petroleum-contaminated soil. Therefore, the potential of two Iranian species, Akhani and Akhani, for phytoremediation of soils contaminated with 0.

View Article and Find Full Text PDF

A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg(-1)) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme).

View Article and Find Full Text PDF