The Internet of Things (IoT) stands as one of the most transformative technologies of our era, significantly enhancing the living conditions and operational efficiencies across various domains [...
View Article and Find Full Text PDFTHIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS. Different types of abusive content such as offensive language, hate speech, aggression, etc. have become prevalent in social media and many efforts have been dedicated to automatically detect this phenomenon in different resource-rich languages such as English.
View Article and Find Full Text PDFSocial media platforms have surpassed cultural and linguistic boundaries, thus enabling online communication worldwide. However, the expanded use of various languages has intensified the challenge of online detection of hate speech content. Despite the release of multiple Natural Language Processing (NLP) solutions implementing cutting-edge machine learning techniques, the scarcity of data, especially labeled data, remains a considerable obstacle, which further requires the use of semisupervised approaches along with Generative Artificial Intelligence (Generative AI) techniques.
View Article and Find Full Text PDFDetecting the underlying human values within arguments is essential across various domains, ranging from social sciences to recent computational approaches. Identifying these values remains a significant challenge due to their vast numbers and implicit usage in discourse. This study explores the potential of emotion analysis as a key feature in improving the detection of human values and information extraction from this field.
View Article and Find Full Text PDFThe prevalence of offensive content on online communication and social media platforms is growing more and more common, which makes its detection difficult, especially in multilingual settings. The term "Offensive Language" encompasses a wide range of expressions, including various forms of hate speech and aggressive content. Therefore, exploring multilingual offensive content, that goes beyond a single language, focus and represents more linguistic diversities and cultural factors.
View Article and Find Full Text PDFAdvances in technology have been able to affect all aspects of human life. For example, the use of technology in medicine has made significant contributions to human society. In this article, we focus on technology assistance for one of the most common and deadly diseases to exist, which is brain tumors.
View Article and Find Full Text PDFNowadays, a massive number of people are involved in various social media. This fact enables organizations and institutions to more easily access their audiences across the globe. Some of them use as an automatic entity to gain intangible access and influence on their users by faster content propagation.
View Article and Find Full Text PDFDisparate biases associated with datasets and trained classifiers in hateful and abusive content identification tasks have raised many concerns recently. Although the problem of biased datasets on abusive language detection has been addressed more frequently, biases arising from trained classifiers have not yet been a matter of concern. In this paper, we first introduce a transfer learning approach for hate speech detection based on an existing pre-trained language model called BERT (Bidirectional Encoder Representations from Transformers) and evaluate the proposed model on two publicly available datasets that have been annotated for racism, sexism, hate or offensive content on Twitter.
View Article and Find Full Text PDF