Publications by authors named "Reza Esfandiary"

Subcutaneous (SC) injections can be associated with local pain and discomfort that is subjective and may affect treatment adherence and overall patient experience. With innovations increasingly focused on finding ways to deliver higher doses and volumes (≥2 mL), there is a need to better understand the multiple intertwined factors that influence pain upon SC injection. As a priority for the SC Drug Development & Delivery Consortium, this manuscript provides a comprehensive review of known attributes from published literature that contribute to pain/discomfort upon SC injection from three perspectives: (1) device and delivery factors that cause physical pain, (2) formulation factors that trigger pain responses, and (3) human factors impacting pain perception.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa are major causes of hospital-acquired infections and sepsis. Due to increasing antibiotic resistance, new treatments are needed. Mesenchymal stem cells (MSCs) have antimicrobial effects, which can be enhanced by preconditioning with antibiotics.

View Article and Find Full Text PDF

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable.

View Article and Find Full Text PDF

Liquid-liquid phase separation is a phenomenon within biology whereby proteins can separate into dense and more dilute phases with distinct properties. Three antibodies that undergo liquid-liquid phase separation were characterized in the protein-rich and protein-poor phases. In comparison to the protein-poor phase, the protein-rich phase demonstrates more blue-shift tryptophan emissions and red-shifted amide I absorbances.

View Article and Find Full Text PDF

Electrostatically driven attractions between proteins can result in issues for therapeutic protein formulations such as solubility limits, aggregation, and high solution viscosity. Previous work showed that a model monoclonal antibody displayed large and potentially problematic electrostatically driven attractions at typical pH (5-8) and ionic strength conditions (∼10-100 mM). Molecular simulations of a hybrid coarse-grained model (1bC/D, one bead per charged site and per domain) were used to predict potential point mutations to identify key charge changes (charge-to-neutral or charge-swap) that could greatly reduce the net attractive protein-protein self-interactions.

View Article and Find Full Text PDF

We investigated the discoloration of a highly concentrated monoclonal antibody (mAbZ) in sodium acetate (NaAc) and histidine/lysine (His/Lys) buffer after exposure to visible light. The color change of the mAbZ formulation was significantly more intense in NaAc buffer and developed a characteristic absorbance with a λ of ca. 450 nm.

View Article and Find Full Text PDF

Weak macromolecular interactions assume a dominant role in the behavior of highly concentrated solutions, and are at the center of a variety of fields ranging from colloidal chemistry to cell biology, neurodegenerative diseases, and manufacturing of protein drugs. They are frequently measured in different biophysical techniques in the form of second virial coefficients, and nonideality coefficients of sedimentation and diffusion, which may be related mechanistically to macromolecular distance distributions in solution and interparticle potentials. A problem arises for proteins where reversible self-association often complicates the concentration-dependent behavior, such that grossly inconsistent coefficients are measured in experiments based on different techniques, confounding quantitative conclusions.

View Article and Find Full Text PDF

Monoclonal antibodies are a class of biotherapeutics used for an increasing variety of disorders, including cancer, autoimmune, neurodegenerative, and viral diseases. Besides their antigen specificity, therapeutic use also mandates control of their solution interactions and colloidal properties in order to achieve a stable, efficacious, non-immunogenic, and low viscosity antibody solution at concentrations in the range of 50-150 mg/mL. This requires characterization of their reversible self-association, aggregation, and weak attractive and repulsive interactions governing macromolecular distance distributions in solution.

View Article and Find Full Text PDF

Neurturin is a potent neurotrophic factor that has been investigated as a potential therapeutic agent for the treatment of neurodegenerative diseases, including Parkinson's disease, and, more recently, for the treatment of type II diabetes. However, purification of neurturin for clinical applications has been hampered by its low solubility in aqueous solutions. Here we describe the development of a scalable manufacturing process for recombinant neurturin from E.

View Article and Find Full Text PDF

Polysorbates are used ubiquitously in protein therapeutic drugs to help minimize adsorption to surfaces and aggregation. It has been recognized that polysorbate can itself degrade and in turn result in loss of efficacy of therapeutic proteins. We studied the 2 main pathways of polysorbate 80 (PS80) degradation, enzymatic ester hydrolysis, and oxidation.

View Article and Find Full Text PDF

Light exposure of a monoclonal antibody formulation containing polysorbate 80 (PS80) leads to cis/trans isomerization of monounsaturated and polyunsaturated fatty acids. This cis/trans isomerization was monitored by positive electrospray ionization mass spectrometry of intact PS80 components as well as by negative ion electrospray ionization mass spectrometry analysis of free fatty acids generated via esterase-catalyzed hydrolysis. The light-induced cis/trans isomerization of unsaturated fatty acids in PS80 required the presence of the monoclonal antibody, or, at a minimum (for mechanistic studies), a combination of N-acetyltryptophan amide and glutathione disulfide, suggesting the involvement of thiyl radicals generated by photoinduced electron transfer from Trp to the disulfide.

View Article and Find Full Text PDF

Increased protein solubility is known to correlate with an increase in the proportion of lysine over arginine residues. Previous work has shown that the aggregation propensity of a single-chain variable fragment (scFv) does not correlate with its conformational stability or native-state protein-protein interactions. Here, we test the hypothesis that aggregation is driven by the colloidal stability of partially unfolded states, studying the behavior of scFv mutants harboring single or multiple site-specific arginine to lysine mutations in denaturing buffers.

View Article and Find Full Text PDF

Many challenges limit the formulation of antibodies as high-concentration liquid dosage forms including elevated solution viscosity, decreased physical stability, and in some cases, liquid-liquid phase separation. In this work, an IgG1 monoclonal antibody (mAb-J), which undergoes concentration-dependent reversible self-association (RSA), is characterized in the presence of 4 amino acids (Arg, Lys, Asp, Glu) and NaCl using biophysical techniques and hydrogen exchange-mass spectrometry. The 5 additives disrupt RSA, prevent phase separation, and reduce solution viscosity to varying extents.

View Article and Find Full Text PDF

In this work, we continue to examine excipient effects on the reversible self-association (RSA) of 2 different IgG1 monoclonal antibodies (mAb-J and mAb-C). We characterize the RSA behavior of mAb-C which, similar to mAb-J (see Part 1), undergoes concentration-dependent RSA, but by a different molecular mechanism. Five additives that affect protein hydrophobic interactions to varying extents including a chaotropic salt (guanidine hydrochloride), a hydrophobic salt (trimethylphenylammonium iodide), an aromatic amino acid derivative (tryptophan amide hydrochloride), a kosmotropic salt (sodium sulfate, NaSO), and a less polar solvent (ethanol) were evaluated to determine their effects on the solution properties, molecular properties, and RSA of mAb-C at various protein concentrations.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are complex molecular structures. They are often prone to development challenges particularly at high concentrations due to undesired solution properties such as reversible self-association, high viscosity, and liquid-liquid phase separation. In addition to formulation optimization, applying protein engineering can provide an alternative mitigation strategy.

View Article and Find Full Text PDF

Antibodies are molecules that exhibit diverse conformational changes on different timescales, and there is ongoing interest to better understand the relationship between antibody conformational dynamics and storage stability. Physical stability data for an IgG4 monoclonal antibody (mAb-D) were gathered through traditional forced degradation (temperature and stirring stresses) and accelerated stability studies, in the presence of different additives and solution conditions, as measured by differential scanning calorimetry, size exclusion chromatography, and microflow imaging. The results were correlated with hydrogen exchange mass spectrometry (HX-MS) data gathered for mAb-D in the same formulations.

View Article and Find Full Text PDF

An automated method using biotinylated GroEL-streptavidin biosensors with biolayer interferometry (GroEL-BLI) was evaluated to detect the formation of transiently formed, preaggregate species in various pharmaceutically relevant monoclonal antibody (mAb) samples. The relative aggregation propensity of various IgG1 and IgG4 mAbs was rank ordered using the GroEL-BLI biosensor method, and the least stable IgG4 mAb was subjected to different stresses including elevated temperatures, acidic pH, and addition of guanidine HCl. The GroEL-BLI biosensor detects mAb preaggregate formation mostly before, or sometimes concomitantly with, observing soluble aggregates and subvisible particles using size-exclusion chromatography and microflow imaging, respectively.

View Article and Find Full Text PDF

A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences.

View Article and Find Full Text PDF

Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development.

View Article and Find Full Text PDF

Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions.

View Article and Find Full Text PDF

Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e.

View Article and Find Full Text PDF

This study highlights the significance of the freezing step and the critical role it can play in modulating process performance and product quality during freeze-drying. For the model protein formulation evaluated, the mechanism of freezing had a significant impact on cake appearance, a potential critical product quality attribute for a lyophilized drug product. Contrary to common knowledge, a freezing step with annealing resulted in 20% increase in primary drying time compared to without annealing.

View Article and Find Full Text PDF

For therapeutic protein analytical studies related to evaluating lot-to-lot variability, different processes and/or formulations, or biosimilars, there is growing interest in applying novel data visualization tools for fingerprint analysis to identify statistically significant differences between 2 samples. Comparative Signature Diagrams (CSDs) were previously developed to display such differences as colored contour plots using a variety of biophysical data sets. In this study, several improvements are proposed to enhance readability and quantitative determinations of CSDs using protein stability data from more commonly used analytical methods such as size exclusion chromatography and capillary isoelectric focusing.

View Article and Find Full Text PDF

There is a need for new analytical approaches to better characterize the nature of the concentration-dependent, reversible self-association (RSA) of monoclonal antibodies (mAbs) directly, and with high resolution, when these proteins are formulated as highly concentrated solutions. In the work reported here, hydrogen exchange mass spectrometry (HX-MS) was used to define the concentration-dependent RSA interface, and to characterize the effects of association on the backbone dynamics of an IgG1 mAb (mAb-C). Dynamic light scattering, chemical cross-linking, and solution viscosity measurements were used to determine conditions that caused the RSA of mAb-C.

View Article and Find Full Text PDF