Publications by authors named "Reza Bafkary"

Controlling the drug release and restricting its presence in healthy organs is extremely valuable. In this study, mesoporous silica nanoparticles (MSN) as the core, loaded with paclitaxel (PTX), were coated with a non-porous silica shell functionalized with disulfide bonds. The nanoparticles were further coated with polyethylene glycol (PEG) via disulfide linkages.

View Article and Find Full Text PDF

Introduction: Medications used to treat oral ulcers include corticosteroids, anesthetics, and antihistamines. These can be used as gels, mouthwashes, pastes, ointments, etc. Diphenhydramine hydrochloride (DPH) has local anesthetic properties that can help treat the aphthae.

View Article and Find Full Text PDF

In this study, surface modified mesoporous silica nanoparticles (MSNs) were prepared for the targeted delivery of the anticancer agents, daunorubicin (DNR) and cytarabine (CTR), against K562 leukemia cancer cell lines. The MSNs were surface-modified with pH-sensitive chitosan (CS) to prevent the burst release of anticancer agents at the physiological pH of 7.4 and to enable a higher drug release at lower pH and higher concentration of glutathione.

View Article and Find Full Text PDF

Background: Stimuli-responsive drug delivery systems have been proven to be a promising strategy to enhance tumor localization, overcome multidrug resistance (MDR), and reduce the side effects of chemotherapy agents.

Objectives: In this study, a temperature and redox dual stimuli-responsive system using mesoporous silica nanoparticles (MSNs) for targeted delivery of doxorubicin (DOX) was developed.

Methods: Mesoporous silica nanoparticles were capped with poly(N-isopropylacrylamide) (PNIPAM), a thermo-sensitive polymer, with atom transfer radical polymerization (ATRP) method, via disulfide bonds (DOX-MSN-S-S-PNIPAM) to attain a controlled system that releases DOX under glutathione-rich (GSH-rich) environments and temperatures above PNIPAM's lower critical solution temperature (LCST).

View Article and Find Full Text PDF

High porous particles with specific aerodynamic properties were processed by the spray freeze-drying (SFD) method. Comprehensive knowledge about all aspects of the SFD method is required for particle engineering of various pharmaceutical products with good flow properties. In this review, different types of the SFD method, the most frequently employed excipients, properties of particles prepared by this method, and most recent approaches concerning SFD are summarized.

View Article and Find Full Text PDF

Rod-like mesoporous silica nanoparticles with pH-responsive amphiphilic hyperbranched polyester shells were prepared for doxorubicin (DOX) delivery. First, rod-shaped mesoporous silica nanoparticles (MSNs) were obtained, then hydrophobic hyperbranched polyester Boltorn H40 (H40) was grafted on their surface. The H40 coated MSNs were next treated with amine-functionalized polyethylene glycol (PEG) to achieve the hydrophilic and pH-responsive material denoted as PEG-H40-MSNs.

View Article and Find Full Text PDF

pH-responsive magnetic carriers at the nanoscale are one of the most important agents for the targeted treatment of cancer. In this study, FeO nanoparticles were prepared by co-precipitation method and functionalized with three types of PEG using ultrasound waves. PEGlated particles were modified with chitosan shell through ultrasound-assisted double emulsion method.

View Article and Find Full Text PDF