This study investigates the role of leading-edge (LE) curvature in flapping wing aerodynamics considering hovering and forward flight conditions. A scaled-up robotic model is towed along its longitudinal axis by a rack gear carriage system. The forward velocity of the robotic model is changed by varying the advance ratiofrom 0 (hovering) to 1.
View Article and Find Full Text PDFBioinspir Biomim
October 2020
Wing flexibility is unavoidable for flapping wing flyers to ensure a lightweight body and for higher payload allowances on board. It also effectively minimizes the inertia force from high-frequency wingbeat motion. However, related studies that attempt to clarify the essence of wing flexibility remain insufficient.
View Article and Find Full Text PDF