Objectives: The T1-weighted GRE (gradient recalled echo) sequence with the Dixon technique for water/fat separation is an essential component of abdominal MRI (magnetic resonance imaging), useful in detecting tumors and characterizing hemorrhage/fat content. Unfortunately, the current implementation of this sequence suffers from several problems: (1) low resolution to maintain high pixel bandwidth and minimize chemical shift; (2) image blurring due to respiratory motion; (3) water/fat swapping due to the natural ambiguity between fat and water peaks; and (4) off-resonance fat blurring due to the multipeak nature of the fat spectrum. The goal of this study was to evaluate the image quality of water/fat separation using a high-resolution 3-point Dixon golden angle radial acquisition with retrospective motion compensation and multipeak fat modeling in children undergoing abdominal MRI.
View Article and Find Full Text PDFBackground: Only verbal pregnancy screening is recommended for post-menarcheal females undergoing pelvic radiographs. In contrast, usually, a urine/serum pregnancy test for pelvic computed tomographic (CT) exams is required out of concern for higher radiation exposure.
Objective: To estimate patient-specific fetus absorbed dose to a potentially pregnant minor from an optimized dose CT of the pelvis for femoral version and surgical planning and provide evidence that such examinations of the pelvis can be performed with only verbal pregnancy screening.
Objectives: Hip displacement is the second most common orthopedic problem affecting children with cerebral palsy (CP). Routine radiographic hip surveillance typically involves an anteroposterior (AP) pelvis radiograph. Unfortunately, this imaging protocol is limited by its projectional technique and the positioning challenges in children with CP.
View Article and Find Full Text PDFWe wished to determine whether newly available flat panel detector (FPD) c-arms were (1) associated with lower radiation dose during ureteroscopy (URS) than conventional image intensifier (CII) c-arms and (2) to compare fluoroscopic image quality between the units. We retrospectively reviewed 44 consecutive patients undergoing URS at a pediatric hospital, with c-arms assigned by availability in the operating room. We performed dosimetry experiments using the same c-arms on standard phantoms.
View Article and Find Full Text PDFPurpose: To develop a scheme to quantitatively assess localization accuracy of tomosynthesis-guided vacuum-assisted breast biopsy apparatus.
Methods: A phantom containing a metallic pellet on a flexible plastic shaft was constructed and was tested in cranio-caudal (CC) and lateral (LAT) arm biopsy geometries following the standard clinical breast biopsy workflow. Three points were manually digitized on tomosynthesis images including: the center of the target, and the tip of the needle in pre- and postfire positions.
Purpose: To compare transverse relaxation rates of brain metabolites estimated from single-TE PRESS acquisitions with more conventionally derived rates estimated from multiple-TE PRESS acquisitions.
Methods: Single-voxel (8 mL) PRESS data within white matter from 6 subjects were acquired at five different TEs. Transverse relaxation rates R of N-acetylaspartate, creatine, and choline were estimated from a single TE using full versus right-side-only sampling of the echo.
The goal of this study was to test a new formalism for extracting reversible and irreversible transverse relaxation rates from resonances within typical proton muscle spectra using only a single spin echo as acquired with routine single-voxel, point-resolved echo spectroscopy (PRESS) acquisitions. Single-voxel, non-water-suppressed PRESS acquisitions within the calf muscles of four healthy subjects were performed at 1.5 T using six echo times ranging from 30 to 576 ms.
View Article and Find Full Text PDFPurpose: The current magnetic resonance imaging-computed tomography (MRI-CT) fusion-based workflow for postimplant dosimetry of low-dose-rate (LDR) prostate brachytherapy takes advantage of the superior soft tissue contrast of MRI, but still relies on CT for seed visualization and detection. Recently an MR-only workflow has been proposed that employs standard MR sequences and visualizes conventional implanted seed with positive contrast solely through MR postprocessing. In this work, the novel MR-only based workflow is compared with the clinical CT-MRI fusion approach.
View Article and Find Full Text PDFPurpose: The lack of positive contrast from brachytherapy seeds in conventional MR images remains a major challenge toward an MRI-only workflow for postimplant dosimetry of low-dose-rate brachytherapy. In this work, the feasibility of our recently proposed MRI-only workflow in clinically relevant scenarios is investigated and the necessary modifications in image acquisition and processing pipeline are proposed for transition to the clinic.
Methods And Materials: Four prostate phantoms with a total of 321 I-125 implanted dummy seeds and three patients with a total of 168 implanted seeds were scanned using a gradient echo sequence on 1.
Magnetic resonance-guided radiation therapy (MR-GRT) offers great potential to improve radiation treatment outcomes by providing more accurate and patient-tailored therapy. Despite superior soft tissue contrast in MRI, one of the challenges towards MRI-only workflows is that the process often requires some sort of 'MR-invisible' metal-based devices. In this study, the feasibility of quantitative susceptibility mapping (QSM) for visualization of some MR-invisible radiation therapy devices was studied.
View Article and Find Full Text PDFObjectives: Epinephrine is routinely administered to sudden cardiac arrest patients during resuscitation, but the neurologic effects on patients treated with epinephrine are not well understood. This study aims to assess the cerebral oxygenation and metabolism during ventricular fibrillation cardiac arrest, cardiopulmonary resuscitation, and epinephrine administration.
Design: To investigate the effects of equal dosages of IV epinephrine administrated following sudden cardiac arrest as a continuous infusion or successive boluses during cardiopulmonary resuscitation, we monitored cerebral oxygenation and metabolism using hyperspectral near-infrared spectroscopy.
Background And Purpose: Permanent seed brachytherapy is an established treatment option for localized prostate cancer. Currently, post-implant dosimetry is performed on CT images despite challenging target delineation due to limited soft tissue contrast. This work aims to develop an MRI-only workflow for post-implant dosimetry of prostate brachytherapy seeds.
View Article and Find Full Text PDFBackground: Maintaining cerebral oxygen delivery and metabolism during cardiac arrest (CA) through resuscitation is essential to improve the survival rate while avoiding brain injury. The effect of CA and cardiopulmonary resuscitation (CPR) on cerebral and muscle oxygen delivery and metabolism is not clearly quantified.Methods and Results:A novel hyperspectral near-infrared spectroscopy (hNIRS) technique was developed and evaluated to measure cerebral oxygen delivery and aerobic metabolism during ventricular fibrillation (VF) CA and CPR in 14 pigs.
View Article and Find Full Text PDFRecent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving.
View Article and Find Full Text PDF