Publications by authors named "Reyhaneh Neghabat Shirazi"

This study presents a systematic evaluation of the physical, thermal and mechanical performance of medical-grade semi-crystalline PLLA undergoing thermally-accelerated degradation. Samples were immersed in phosphate-buffered saline solution at 50 °C for 112 days and mass loss, molecular weight, thermal properties, degree of crystallinity, FTIR and Raman spectra, tensile elastic modulus, yield stress and failure stress/strain were evaluated at consecutive time points. Samples showed a consistent reduction in molecular weight and melting temperature, a consistent increase in percent crystallinity and limited changes in glass transition temperature and mass loss.

View Article and Find Full Text PDF

Delivery of therapeutic-laden biomaterials to the epicardial surface of the heart presents a promising method of treating a variety of diseased conditions by offering targeted, localized release with limited systemic recirculation and enhanced myocardial tissue uptake. A vast range of biomaterials and therapeutic agents using this approach been investigated. However, the fundamental factors that govern transport of the drug molecules from the biomaterials to the tissue are not well understood.

View Article and Find Full Text PDF

The clinical translation of regenerative therapy for the diseased heart, whether in the form of cells, macromolecules or small molecules, is hampered by several factors: the poor retention and short biological half-life of the therapeutic agent, the adverse side effects from systemic delivery, and difficulties with the administration of multiple doses. Here, we report the development and application of a therapeutic epicardial device that enables sustained and repeated administration of small molecules, macromolecules and cells directly to the epicardium via a polymer-based reservoir connected to a subcutaneous port. In a myocardial infarct rodent model, we show that repeated administration of cells over a four-week period using the epicardial reservoir provided functional benefits in ejection fraction, fractional shortening and stroke work, compared to a single injection of cells and to no treatment.

View Article and Find Full Text PDF

In this study, the effects of material thickness and processing method on the degradation rate and the changes in the mechanical properties of poly(lactic-co-glycolic acid) material during simulated physiological degradation were investigated. Two types of poly(lactic-co-glycolic acid) materials were considered: 0.12 mm solvent-cast films and 1 mm compression-moulded plates.

View Article and Find Full Text PDF

Scaffolding plays a critical rule in tissue engineering and an appropriate degradation rate and sufficient mechanical integrity are required during degradation and healing of tissue. This paper presents a computational investigation of the molecular weight degradation and the mechanical performance of poly(lactic-co-glycolic acid) (PLGA) films and tissue engineering scaffolds. A reaction-diffusion model which predicts the degradation behaviour is coupled with an entropy-based mechanical model which relates Young׳s modulus and the molecular weight.

View Article and Find Full Text PDF

Despite the potential applications of poly(lactic-co-glycolic) acid (PLGA) coatings in medical devices, the mechanical properties of this material during degradation are poorly understood. In the present work, the nanomechanical properties and degradation of PLGA film were investigated. Hydrolysis of solvent-cast PLGA film was studied in buffer solution at 37 °C.

View Article and Find Full Text PDF