Publications by authors named "Rex X Ren"

A novel sensor array using seven room-temperature ionic liquids (ILs) as sensing materials and a quartz crystal microbalance (QCM) as a transducer was developed for the detection of organic vapors at ambient and elevated temperatures. Ethanol, dichloromethane, benzene, and heptane were selected as representative gas analytes for various kinds of environmental pollutants and common industrial solvents. The QCM/IL sensors responded proportionately and reversibly to the organic vapor concentrations (i.

View Article and Find Full Text PDF

The photochemistry of the retinoid analogue A1E shows an oxygen and solvent dependence. Irradiation of A1E with visible light (lambda(irr) = 425 nm) in methanol solutions resulted in pericyclization to form pyridinium terpenoids. Although the quantum yield for this cyclization is low (approximately 10(-4)), nevertheless the photochemical transformation occurs with quantitative chemical yield with remarkable chemoselectivity and diastereoselectivity.

View Article and Find Full Text PDF

We report the use of thermodynamic measurements in a self-complementary DNA duplex (5'-dXCGCGCG)(2), where X is an unpaired natural or nonnatural deoxynucleoside, to study the forces that stabilize aqueous aromatic stacking in the context of DNA. Thermal denaturation experiments show that the core duplex (lacking X) is formed with a free energy (37 °C) of -8.1 kcal·mol(-1) in a pH 7.

View Article and Find Full Text PDF

We describe the synthesis, structure and DNA incorporation of a class of novel aromatic C-deoxynucleosides in which benzenes and larger polycyclic aromatics serve as DNA base analogs. Novel approaches have been developed for glycosidic bond formation and for epimenzation of the anomeric substitutents to β-configuration, and we describe some of the properties of such compounds in DNA.

View Article and Find Full Text PDF

We describe the synthesis, structures, and DNA incorporation of deoxyribonucleosides carrying polycyclic aromatic hydrocarbons as the DNA "base" analogue. The new polycyclic compounds are 1-naphthyl, 2-naphthyl, 9-phenanthrenyl, and 1-pyrenyl deoxynucleosides. The compounds are synthesized using a recently developed C-glycosidic bond formation method involving organocadmium derivatives of the aromatic compounds coupling with a 1α-chlorodeoxyribose precursor.

View Article and Find Full Text PDF