Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN.
View Article and Find Full Text PDFThe expanding application of deep brain stimulation (DBS) therapy both drives and is informed by our growing understanding of disease pathophysiology and innovations in neurosurgical care. Neurophysiological targeting, a mainstay for identifying optimal, motor responsive targets, has remained largely unchanged for decades. Utilizing deep learning-based computer vision and related computational methods, we developed an effective and simple intraoperative approach to objectively correlate neural signals with movements, automating and standardizing the otherwise manual and subjective process of identifying ideal DBS electrode placements.
View Article and Find Full Text PDFWhat are the neural mechanisms of skill acquisition? Many studies find that long-term practice is associated with a functional reorganization of cortical neural activity. However, the link between these changes in neural activity and the behavioral improvements that occur is not well understood, especially for long-term learning that takes place over several weeks. To probe this link in detail, we leveraged a brain-computer interface (BCI) paradigm in which rhesus monkeys learned to master nonintuitive mappings between neural spiking in primary motor cortex and computer cursor movement.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Previous studies of intracortical brain-computer interfaces (BCIs) have often focused on or compared the use of spiking activity and local field potentials (LFPs) for decoding kinematic movement parameters. Conversely, using these signals to detect the initial intention to use a neuroprosthetic device or not has remained a relatively understudied problem. In this study, we examined the relative performance of spiking activity and LFP signals in detecting discrete state changes in attention regarding a user's desire to actively control a BCI device.
View Article and Find Full Text PDF