Publications by authors named "Rex Dunham"

The confinement of transgenic fish is essential to prevent their escape and reproduction in natural ecosystems. Reversible transgenic sterilization is a promising approach to control the reproduction of transgenic fish. Therefore, the present study was conducted to develop a reversibly sterile channel catfish () via the transgenic overexpression of the goldfish () glutamic acid decarboxylase (GAD) gene driven by the common carp () β-actin promoter to disrupt normal gamma-aminobutyric acid (GABA) regulation.

View Article and Find Full Text PDF

Xenogenesis has been recognized as a prospective method for producing channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrids. The xenogenesis procedure can be achieved by transplanting undifferentiated stem cells derived from a donor fish into a sterile recipient.

View Article and Find Full Text PDF

In F1 hybrids, phenotypic values are expected to be near the parental means under additive effects or close to one parent under dominance. However, F1 traits can fall outside the parental range, and outbreeding depression occurs when inferior fitness is observed in hybrids. Another possible outcome is heterosis, a phenomenon that interspecific hybrids or intraspecific crossbred F1s exhibit improved fitness compared to both parental species or strains.

View Article and Find Full Text PDF

Channel catfish () and blue catfish () are two economically important freshwater aquaculture species in the United States, with channel catfish contributing to nearly half of the country's aquaculture production. While differences in economic traits such as growth rate and disease resistance have been noted, the extent of transcriptomic variance across various tissues between these species remains largely unexplored. The hybridization of female channel catfish with male blue catfish has led to the development of superior hybrid catfish breeds that exhibit enhanced growth rates and improved disease resistance, which dominate more than half of the total US catfish production.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated multiplex genome editing (MGE) conventionally uses multiple single-guide RNAs (sgRNAs) for gene-targeted mutagenesis via the non-homologous end joining (NHEJ) pathway. MGE has been proven to be highly efficient for functional gene disruption/knockout (KO) at multiple loci in mammalian cells or organisms. However, in the absence of a DNA donor, this approach is limited to small indels without transgene integration.

View Article and Find Full Text PDF

Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccβA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, β-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%.

View Article and Find Full Text PDF

Follicle-stimulating hormone () plays an important role in sexual maturation in catfish. Knocking out the gene in the fish zygote should suppress the reproduction of channel catfish (). In this study, transcription activator-like effector nuclease (TALEN) plasmids targeting the gene were electroporated into fertilized eggs with the standard double electroporation technique.

View Article and Find Full Text PDF

The females of yellowtail tetra (), known as the freshwater sardine, are approximately 1.33 times larger than males, and thus, all-female monosex culture would increase production and reduce size variability. The present work aimed to identify the optimal dose of 17α-methyltestosterone (MT) to be used in the masculinization of for indirect sex reversal.

View Article and Find Full Text PDF

Effects of antimicrobial peptides (AMP) added to diets on aquatic animal health and body function are influenced by multiple factors such as animal species, initial body weight, the dosage of AMP and feeding duration. However, there is limited knowledge on the relationship between these factors and the body function of aquatic animals. Here, we aimed to perform multiple meta-analyses to investigate the effects of dietary AMP on growth performance (feed conversion ratio [FCR], specific growth rate [SGR]), enzyme activity (superoxide dismutase activity [SOD], lysozyme activity [LSA]), disease resistance (cumulative survival rate [CSR], the expression of immune-related genes [GENE]) and the abundance of gut microbiota (MICRO) from a pool of empirical studies.

View Article and Find Full Text PDF

This Special Issue, "The Application of Genetic and Genomic Biotechnology in Aquaculture," collates 14 published manuscripts covering different aspects of implementing advanced molecular genetics and genomic science in aquaculture [...

View Article and Find Full Text PDF

The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne gene was silenced, whereas the Y-borne gene was expressed, making monoallelic expression of responsible for sex determination, much like genomic imprinting.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated knock-in (KI) has a wide application in gene therapy, gene function study, and transgenic breeding programs. Unlike gene therapy, which requires accurate KI to correct gene mutation, transgenic breeding programs can accept robust KI as long as integration does not interrupt normal gene functions and result in any negative pleiotropic effects. High KI efficiency is required to reduce the breeding cost and shorten the breeding period, especially in transferring multiple foreign genes to a single individual.

View Article and Find Full Text PDF

Effects of CRISPR/Cas9 knockout of the melanocortin-4 receptor (mc4r) gene in channel catfish, Ictalurus punctatus, were investigated. Three sgRNAs targeting the channel catfish mc4r gene in conjunction with Cas9 protein were microinjected in embryos and mutation rate, inheritance, and growth were studied. Efficient mutagenesis was achieved as demonstrated by PCR, Surveyor® assay, and DNA sequencing.

View Article and Find Full Text PDF

The hybrids of female channel catfish (Ictalurus punctatus) and male blue catfish (I. furcatus) account for >50% of US catfish production due to superior growth, feed conversion, and disease resistance compared to both parental species. However, these hybrids can rarely be naturally spawned.

View Article and Find Full Text PDF

Background: The blue catfish is of great value in aquaculture and recreational fisheries. The F1 hybrids of female channel catfish (Ictalurus punctatus) × male blue catfish (Ictalurusfurcatus) have been the primary driver of US catfish production in recent years because of superior growth, survival, and carcass yield. The channel-blue hybrid also provides an excellent model to investigate molecular mechanisms of environment-dependent heterosis.

View Article and Find Full Text PDF

Exogenous oestrogen 17β-oestradiol (E2) has been shown to effectively induce feminization in teleosts. However, the molecular mechanisms underlying the process remain unclear. Here, we determined global DNA methylation and gene expression profiles of channel catfish () during early sex differentiation after E2 treatment.

View Article and Find Full Text PDF

Constructs bearing the cecropin B gene from the moth Hyalophora cecropia, driven by the cytomegalovirus (CMV) promoter, or the common carp beta-actin (β-actin) promoter were transferred to channel catfish, Ictalurus punctatus via electroporation. One F channel catfish family transgenic for cecropin transgene driven by the CMV promoter, and one F channel catfish family transgenic for cecropin transgene driven by the common carp β-actin promoter were produced. F and F individuals exhibited enhanced disease resistance when challenged in tanks with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC).

View Article and Find Full Text PDF

Channel catfish has an XY sex determination system. However, the X and Y chromosomes harbor an identical gene content of 950 genes each. In this study, we conducted comparative analyses of methylome and transcriptome of genetic males and genetic females before gonadal differentiation to provide insights into the mechanisms of sex determination.

View Article and Find Full Text PDF

Transcription activator-like effector nuclease (TALEN) plasmids targeting the channel catfish gonadotropin-releasing hormone (cfGnRH) gene were delivered into fertilized eggs with double electroporation to sterilize channel catfish (Ictalurus punctatus). Targeted cfGnRH fish were sequenced and base deletion, substitution, and insertion were detected. The gene mutagenesis was achieved in 52.

View Article and Find Full Text PDF

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (Ictalurus punctatus) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon (Oncorhynchus masou) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach.

View Article and Find Full Text PDF

Identification of genetic markers associated with resistance against enteric septicemia of catfish (ESC) is of great interest for genetic enhancement programs of catfish. In the present study, bulk segregant RNA-Seq analysis was applied to determine differentially expressed genes and alleles after ESC infection. Here we report three genomic regions on LG1, LG12, and LG26, containing significant single-nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

The hybrid between female channel catfish () and male blue catfish () is superior in feed conversion, disease resistance, carcass yield, and harvestability compared to both parental species. However, heterosis and heterobeltiosis only occur in pond culture, and channel catfish grow much faster than the other genetic types in small culture units. This environment-dependent heterosis is intriguing, but the underlying genetic mechanisms are not well understood.

View Article and Find Full Text PDF

Fish is an essential source of high-quality protein for people worldwide. The present study was designed to compare the growth performance among the channel-blue hybrid catfish, channel catfish transgenic for the channel catfish growth hormone (ccGH) cDNA driven by the antifreeze protein promoter from an ocean pout Zoarces americanus (opAFP-ccGH), and non-transgenic channel catfish control. Mean body weight of channel-blue hybrid catfish was 15.

View Article and Find Full Text PDF

This study compared growth performance between female and male transgenic channel catfish, Ictalurus punctatus, containing channel catfish growth hormone full-length cDNA driven by the ocean pout antifreeze protein promoter, opAFP-ccGH, the rainbow trout metallothionein promoter, rtMT-ccGH, or both constructs, and their non-transgenic siblings in earthen ponds at 16 and 48 months of age. Body weight between the transgenic and their non-transgenic siblings differed (P < 0.001) at all ages.

View Article and Find Full Text PDF

One of the major goals in aquaculture is to protect fish against infectious diseases as disease outbreaks could lead to economic losses if not controlled. Antimicrobial peptides (AMPs), a class of highly conserved peptides known to possess direct antimicrobial activities against invading pathogens, were evaluated for their ability to protect Channel Catfish Ictalurus punctatus and hybrid catfish (female Channel Catfish × male Blue Catfish I. furcatus) against infection caused by the fish pathogen Aeromonas hydrophila ML09-119.

View Article and Find Full Text PDF