Drug resistance (DR) is one of the challenges in treating retinoblastoma (Rb) that warrants novel approaches. With the emerging evidence on the role of small extracellular vesicles (sEVs) as a drug-delivery carrier system, in this study, we derived the drug-resistant (DR) clones of Y79 cells and evaluated the efficacy of sEVs-loaded with carboplatin (sEVs-CPT) to reverse the chemoresistance. Drug-resistant clones of Y79 cells (DR-Y79) were systematically developed through sequential exposure to carboplatin (CPT), showcasing a sixfold increase in inhibitory concentration when compared to parental Y79 cells (IC: 41.
View Article and Find Full Text PDFPurpose: Highly dynamic oxygen gradients occur within tumors that can result in a hypoxic response, contributing to tumor progression and metastasis. Evidence in uveal melanoma (UM) suggests an upregulated hypoxia response in some poor prognosis UM characterized by HIF1α signaling. We aimed to investigate the effects of exposure to hypoxia on tumor growth and dissemination in the chick embryo chorioallantoic membrane (CAM) model.
View Article and Find Full Text PDFPurpose: Cancer stem cells (CSCs) are known to contribute to tumor relapses by virtue of their chemoresistance. With the knowledge that nanoformulations can overcome drug resistance, we evaluated the efficacy and cytotoxicity of clinical-grade carboplatin (CPT)- and etoposide (ETP)-loaded lactoferrin nanoparticles (Lf-Nps) on total, CD133-enriched (non-CSC), and CD133-depleted (CSC) populations of retinoblastoma (Rb) Y79 cells.
Methods: Physicochemical properties of drug-loaded Lf-Nps were measured with transmission electron microscopy and attenuated total reflectance-Fourier transform infrared.