CD300a is an inhibitory receptor for mast cells and eosinophils in allergic inflammation (AI); however, the spatiotemporal expression of CD300a and its potential roles in the resolution of AI are still to be determined. In this study, employing a mouse model of allergic peritonitis, we demonstrate that CD300a expression on peritoneal cells is regulated from inflammation to resolution. Allergic peritonitis-induced CD300a mice had a rapid increase in their inflammatory cell infiltrates and tryptase content in the peritoneal cavity compared with wild type, and their resolution process was significantly delayed.
View Article and Find Full Text PDFBackground: Eosinophil-associated RNases (EARs) are stored preformed in eosinophil cytoplasmic secretory granules and have a key role in eosinophil effector functions in host defence and inflammatory disorders. However, the secretion mechanisms of EARs are poorly understood.
Objective: Our study aimed to understand the involvement of cytoskeleton machinery in EAR secretion.
Background: SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood.
View Article and Find Full Text PDFProtein disulfide isomerase (PDI) has fundamental roles in the oxidative folding of proteins in the endoplasmic reticulum (ER) of eukaryotic cells. The study of this molecule has been attracting considerable attention due to its association with other cell functions and human diseases. In leukocytes, such as neutrophils, PDI is involved with cell adhesion, signaling and inflammation.
View Article and Find Full Text PDFHighly purified eosinophils can be isolated from peripheral blood by negative selection using an antibody-based magnetic negative selection protocol. The basic protocol describes a sequential fractionation of peripheral blood in which CD16+ granulocytes are enriched first from whole blood, followed by isolation of eosinophils. This technique is easy to use, fast, and highly reproducible.
View Article and Find Full Text PDFRapid secretion of eosinophil-associated RNases (EARs), such as the human eosinophilic cationic protein (ECP), from intracellular granules is central to the role of eosinophils in allergic diseases and host immunity. Our knowledge regarding allergic inflammation has advanced based on mouse experimental models. However, unlike human eosinophils, capacities of mouse eosinophils to secrete granule proteins have been controversial.
View Article and Find Full Text PDFEosinophils are innate immune leukocytes found in relatively low numbers within the blood. Terminal effector functions of eosinophils, deriving from their capacity to release their content of tissue-destructive cationic proteins, have historically been considered primary effector mechanisms against specific parasites, and are likewise implicated in tissue damage accompanying allergic responses such as asthma. However, the past decade has seen dramatic advancements in the field of eosinophil immunobiology, revealing eosinophils to also be key participants in many other facets of innate immunity, from bridging innate and adaptive immune responses to orchestrating tissue remodeling events.
View Article and Find Full Text PDFChemokines presented on endothelial tissues instantaneously trigger LFA-1-mediated arrest on ICAM-1 via rapid inside-out and outside-in (ligand-driven) LFA-1 activation. The GTPase RhoA was previously implicated in CCL21-triggered LFA-1 affinity triggering in murine T lymphocytes and in LFA-1-dependent adhesion strengthening to ICAM-1 on Peyer's patch high endothelial venules stabilized over periods of at least 10 s. In this study, we show that a specific RhoA 23/40 effector region is vital for the initial LFA-1-dependent adhesions of lymphocytes on high endothelial venules lasting 1-3 s.
View Article and Find Full Text PDFCholesterol-enriched lipid microdomains regulate L-selectin signaling, but the role of membrane cholesterol in L-selectin adhesion is unclear. Arrest chemokines are a subset of endothelial chemokines that rapidly activate leukocyte integrin adhesiveness under shear flow. In the absence of integrin ligands, these chemokines destabilize L-selectin-mediated leukocyte rolling.
View Article and Find Full Text PDFIt is widely believed that rolling lymphocytes require successive chemokine-induced signaling for lymphocyte function-associated antigen 1 (LFA-1) to achieve a threshold avidity that will mediate lymphocyte arrest. Using an in vivo model of lymphocyte arrest, we show here that LFA-1-mediated arrest of lymphocytes rolling on high endothelial venules bearing LFA-1 ligands and chemokines was abrupt. In vitro flow chamber models showed that endothelium-presented but not soluble chemokines triggered instantaneous extension of bent LFA-1 in the absence of LFA-1 ligand engagement.
View Article and Find Full Text PDFLymphocyte transendothelial migration (TEM) is promoted by fluid shear signals and apical endothelial chemokines. Studying the role of these signals in neutrophil migration across differently activated HUVEC in a flow chamber apparatus, we gained new insights into how neutrophils integrate multiple endothelial signals to promote TEM. Neutrophils crossed highly activated HUVEC in a beta(2) integrin-dependent manner but independently of shear.
View Article and Find Full Text PDFRecently, we reported a rare leukocyte adhesion deficiency (LAD) associated with severe defects in integrin activation by chemokine signals, despite normal ligand binding of leukocyte integrins.(1) We now report that the small GTPase, Rap1, a key regulator of inside-out integrin activation is abnormally regulated in LAD Epstein-Barr virus (EBV) lymphocyte cells. Both constitutive and chemokine-triggered activation of Rap1 were abolished in LAD lymphocytes despite normal chemokine signaling.
View Article and Find Full Text PDFLeukocyte integrins must rapidly strengthen their binding to target endothelial sites to arrest rolling adhesions under physiological shear flow. We demonstrate that the integrin-associated tetraspanin, CD81, regulates VLA-4 and VLA-5 adhesion strengthening in monocytes and primary murine B cells. CD81 strengthens multivalent VLA-4 contacts within subsecond integrin occupancy without altering intrinsic adhesive properties to low density ligand.
View Article and Find Full Text PDFVLA-4 and LFA-1 are the major vascular integrins expressed on circulating lymphocytes. Previous studies suggested that intact cholesterol rafts are required for integrin adhesiveness in different leukocytes. We found the alpha(4) integrins VLA-4 and alpha(4)beta(7) as well as the LFA-1 integrin to be excluded from rafts of human peripheral blood lymphocytes.
View Article and Find Full Text PDF