Invest Ophthalmol Vis Sci
September 2020
Purpose: Photoreceptor precursor cells (PRPs) differentiated from human embryonic stem cells can serve as a source for cell replacement therapy aimed at vision restoration in patients suffering from degenerative diseases of the outer retina, such as retinitis pigmentosa and AMD. In this work, we studied the electrophysiologic maturation of PRPs throughout the differentiation process.
Methods: Human embryonic stem cells were differentiated into PRPs and whole-cell recordings were performed for electrophysiologic characterization at days 0, 30, 60, and 90 along with quantitative PCR analysis to characterize the expression level of various ion channels, which shape the electrophysiologic response.
Aims: Dilated cardiomyopathy (DCM), a myocardial disorder that can result in progressive heart failure and arrhythmias, is defined by ventricular chamber enlargement and dilatation, and systolic dysfunction. Despite extensive research, the pathological mechanisms of DCM are unclear mainly due to numerous mutations in different gene families resulting in the same outcome-decreased ventricular function. Titin (TTN)-a giant protein, expressed in cardiac and skeletal muscles, is an important part of the sarcomere, and thus TTN mutations are the most common cause of adult DCM.
View Article and Find Full Text PDFMutations in SCO2 are among the most common causes of COX deficiency, resulting in reduced mitochondrial oxidative ATP production capacity, often leading to hypertrophic cardiomyopathy (HCM). To date, none of the recent pertaining reports provide deep understanding of the SCO2 disease pathophysiology. To investigate the cardiac pathology of the disease, we were the first to generate induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) from SCO2-mutated patients.
View Article and Find Full Text PDFBackground: Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like.
Objectives: To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes.
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the capacity to differentiate into any specialized cell type, including cardiomyocytes. Therefore, hESC-derived and hiPSC-derived cardiomyocytes (hESC-CMs and hiPSC-CMs, respectively) offer great potential for cardiac regenerative medicine. Unlike some organs, the heart has a limited ability to regenerate, and dysfunction resulting from significant cardiomyocyte loss under pathophysiological conditions, such as myocardial infarction (MI), can lead to heart failure.
View Article and Find Full Text PDFBackground: We previously reported that induced pluripotent stem cell-derived cardiomyocytes manifest beat rate variability (BRV) resembling heart rate variability (HRV) in the human sinoatrial node. We now hypothesized the BRV-HRV continuum originates in pacemaker cells.
Objective: To investigate whether cellular BRV is a source of HRV dynamics, we hypothesized 3 levels of interaction among different cardiomyocyte entities: (1) single pacemaker cells, (2) networks of electrically coupled pacemaker cells, and (3) the in situ sinoatrial node.
Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies.
View Article and Find Full Text PDFBackground: The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing.
View Article and Find Full Text PDF