The p53 gene is mutated in many human tumors. Cells of such tumors often contain abundant mutant p53 (mutp53) protein, which may contribute actively to tumor progression via a gain-of-function mechanism. We applied ChIP-on-chip analysis and identified the vitamin D receptor (VDR) response element as overrepresented in promoter sequences bound by mutp53.
View Article and Find Full Text PDFMutant p53 proteins are thought to have acquired a "gain of function" (GOF) activity that mainly contributes to tumor aggressiveness. Previously we reported that constitutive downregulation of mutant p53 by RNA interference reduces the tumorigenicity of cancer cells in an animal model; however, effects of adaptation to long-term mutant p53 inhibition could not be excluded. To address this point, mimicking more physiological conditions, we now describe the establishment of a lentiviral-based system for conditional interference with mutant p53 expression.
View Article and Find Full Text PDFMutations in the p53 tumor suppressor are very frequent in human cancer. Often, such mutations lead to the constitutive overproduction of mutant p53 proteins, which may exert a cancer-promoting gain of function. We now report that cancer-associated mutant p53 can augment the induction of nuclear factor kappaB (NFkappaB) transcriptional activity in response to the cytokine tumor necrosis factor alpha (TNFalpha).
View Article and Find Full Text PDF