Irradiation-induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA-seq analysis of whole skin-derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence-associated IL-6 and IL-1 signaling, together with IL-17 upregulation and CCR6 -mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation-induced IL-6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts.
View Article and Find Full Text PDFUnlabelled: Liver cancer, which typically develops on a background of chronic liver inflammation, is now the second leading cause of cancer mortality worldwide. For patients with liver cancer, surgical resection is a principal treatment modality that offers a chance of prolonged survival. However, tumor recurrence after resection, the mechanisms of which remain obscure, markedly limits the long-term survival of these patients.
View Article and Find Full Text PDFUnlabelled: The tumor suppressor p53 is a central regulator of signaling pathways that controls the cell cycle and maintains the integrity of the human genome. p53 level is regulated by mouse double minute 2 homolog (Mdm2), which marks p53 for proteasomal degradation. The p53-Mdm2 circuitry is subjected to complex regulation by a variety of mechanisms, including microRNAs (miRNAs).
View Article and Find Full Text PDFHead and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6).
View Article and Find Full Text PDFThe function of imprinted H19 long non-coding RNA is still controversial. It is highly expressed in early embryogenesis and decreases after birth and re-expressed in cancer. To study the role of H19 in oncogenesis and pluripotency, we down-regulated H19 expression in vitro and in vivo in pluripotent human embryonic carcinoma (hEC) and embryonic stem (hES) cells.
View Article and Find Full Text PDF