Publications by authors named "Revilla P"

Introduction: Validations of previously detected quantitative trait loci (QTLs) to assess their reliability are crucial before implementing breeding programs. The objective of this study was to determine the reliability and practical usefulness of previously reported QTLs for resistance to stem tunneling by the Mediterranean stem borer (MSB) and yield. These authors used approximately 600 recombinant inbred lines (RILs) from a multiparent advanced generation intercross (MAGIC) population to map QTL using a genome-wide association study (GWAS) approach.

View Article and Find Full Text PDF

Introduction: The stay-green (SG) or delayed leaf senescence enables crop plants to maintain their green leaves and photosynthetic capacity for a longer time after flowering. It is considered an important trait in maize breeding, which has contributed to gain in grain yield of modern varieties. It has been also used to improve the tolerance to drought and deficiencies in nitrogen fertilization (NF).

View Article and Find Full Text PDF

The ECPGR European Evaluation Network (EVA) for Maize involves genebanks, research institutions, and private breeding companies from nine countries focusing on the valorization of maize genetic resources across Europe. This study describes a diverse collection of 626 local landraces and traditional varieties of maize ( L.) from nine European genebanks, including criteria for selection of the collection and its genetic and phenotypic diversity.

View Article and Find Full Text PDF

Maize (Zea mays) is one of the most important crops worldwide, and fungal diseases are responsible for major losses in food production. Anthracnose caused by Colletotrichum graminicola can infect all maize tissues, although stalk rot and seedling blight cause more significant economic damage (Munkvold and White, 2016). Anthracnose stalk rot is characterized by a distinctive external blackening of the lower stalks resulting in large black streaks, while the pith turns dark brown and has a shredded appearance.

View Article and Find Full Text PDF

Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision.

View Article and Find Full Text PDF

Maize ( L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15 century.

View Article and Find Full Text PDF

Higher hydroxycinnamate content makes maize tissues more recalcitrant to damage by insects, less digestible by ruminants, and less suitable for biofuel production. In a Genome Wide Association Analysis (GWAS) study carried out in a maize MAGIC population, we identified 24 SNPs associated with esterified cell wall-bound hydroxycinnamates, that represented 15 Quantitative Traic Loci (QTL). We identified new genomic regions associated to cell wall bound hydroxycinnamates in maize stover that could have an impact on their content across different genetic backgrounds.

View Article and Find Full Text PDF

Drought is one of the most detrimental abiotic stresses hampering seed germination, development, and productivity. Maize is more sensitive to drought than other cereals, especially at seedling stage. Our objective was to study genetic regulation of drought tolerance at germination and during seedling growth in maize.

View Article and Find Full Text PDF

A large association panel of 836 maize inbreds revealed a broader genetic diversity of cold tolerance, as predominantly favorable QTL with small effects were identified, indicating that genomic selection is the most promising option for breeding maize for cold tolerance. Maize (Zea mays L.) has limited cold tolerance, and breeding for cold tolerance is a noteworthy bottleneck for reaching the high potential of maize production in temperate areas.

View Article and Find Full Text PDF

Cellulosic ethanol derived from fast growing C4 grasses could become an alternative to finite fossil fuels. With the potential to generate a major source of lignocellulosic biomass, maize has gained importance as an outstanding model plant for studying the complex cell wall network and also to optimize crop breeding strategies in bioenergy grasses. A genome-wide association study (GWAS) was conducted using a subset of 408 Recombinant Inbred Lines (RILs) from a Multi-Parent Advanced Generation Intercross (MAGIC) Population in order to identify single nucleotide polymorphisms (SNPs) associated with yield and saccharification efficiency of maize stover.

View Article and Find Full Text PDF

We identify the largest amount of QTLs for cold tolerance in maize; mainly associated with photosynthetic efficiency, which opens new possibilities for genomic selection for cold tolerance in maize. Breeding for cold tolerance in maize is an important objective in temperate areas. The objective was to carry out a highly efficient study of quantitative trait loci (QTLs) for cold tolerance in maize.

View Article and Find Full Text PDF

Currently, there is a high concern from consumers regarding food quality, with emphasis on the origin of food sources. We here review the current situation of beans ( spp.) and cowpea ( (L.

View Article and Find Full Text PDF

Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs. Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines.

View Article and Find Full Text PDF

In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides.

View Article and Find Full Text PDF

Background: Breeding for cold tolerance in maize promises to allow increasing growth area and production in temperate zones. The objective of this research was to conduct genome-wide association analyses (GWAS) in temperate maize inbred lines and to find strategies for pyramiding genes for cold tolerance. Two panels of 306 dent and 292 European flint maize inbred lines were evaluated per se and in testcrosses under cold and control conditions in a growth chamber.

View Article and Find Full Text PDF

Genetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels. The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production.

View Article and Find Full Text PDF

Background: In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation.

View Article and Find Full Text PDF

In spite of multiple studies elucidating the regulatory pathways controlling chlorophyll biosynthesis and photosynthetic activity, little is known about the molecular mechanism regulating cold-induced chlorosis in higher plants. Herein the characterization of the maize inbred line A661 which shows a cold-induced albino phenotype is reported. The data show that exposure of seedlings to low temperatures during early leaf biogenesis led to chlorophyll losses in this inbred.

View Article and Find Full Text PDF

In the Mediterranean area, the main corn borer species are Sesamia nonagrioides Lefebvre (Mediterranean corn borer) and Ostrinia nubilalis Hübner (European corn borer). In the overall context of integrated pest control, it is possible to reduce the effect of a pest without having a negative effect on the environment by varying the sowing date. Benefits are possible if the most susceptible stages of the crop no longer coincide with the peak of the pest.

View Article and Find Full Text PDF

Genomic selection refers to the use of genotypic information for predicting breeding values of selection candidates. A prediction formula is calibrated with the genotypes and phenotypes of reference individuals constituting the calibration set. The size and the composition of this set are essential parameters affecting the prediction reliabilities.

View Article and Find Full Text PDF

Reciprocal recurrent selection (RRS) was proposed for simultaneously improving two populations and their cross. A modification of the classical full-sib RRS (FS-RRS) was proposed in which the performance of full-sibs and S(2) families is combined in a selection index (FS-S(2)-RRS). The Mediterranean corn borer (MCB) is the main corn borer species in the Mediterranean and adjacent areas and produces important yield losses.

View Article and Find Full Text PDF

Background: To elucidate the role of the length of the internode basal ring (LIBR) in resistance to the Mediterranean corn borer (MCB), we carried out a divergent selection program to modify the LIBR using two maize synthetic varieties (EPS20 and EPS21), each with a different genetic background. We investigated the biochemical mechanisms underlying the relationship between the LIBR and borer resistance. Selection to lengthen or shorten the LIBR was achieved for each synthetic variety.

View Article and Find Full Text PDF

Background: Vermicompost has been proposed as a valuable fertilizer for sustainable agriculture. The effects of vermicompost on yield and quality of sweet corn were evaluated in this study. In two field trials, sweet corn plants were grown under (i) a conventional fertilization regime with inorganic fertilizer, and integrated fertilization regimes in which 75% of the nutrients were supplied by the inorganic fertilizer and 25% of the nutrients were supplied by either (ii) rabbit manure, or (iii) vermicompost.

View Article and Find Full Text PDF

Background: Aphasia, one of the core symptoms of cortical dementia, is routinely evaluated using graded naming tests like the Boston Naming Test (BNT). However, the application of this 60-item test is time-consuming and shortened versions have been devised for screening. The hypothesis of this research is that a specifically designed shortened version of the BNT could replace the original 60-item BNT as part of a mini-battery for screening for dementia.

View Article and Find Full Text PDF

Ageing reduces vigour and viability in maize inbred lines due to non-heritable degenerative changes. Besides non-heritable genetic changes due to chromosome aberrations and damage in the DNA sequence, heritable changes during maize conservation have been reported. Genetic variability among aged seeds of inbred lines could be used for association studies with seed germination.

View Article and Find Full Text PDF