The high-dose hook effect, or prozone effect, can lead to negative or falsely lowered plasma ferritin results. Here, cases of a 16-year-old boy and a 70-year-old woman with haemophagocytic lymphohystiocytosis with extremely high concentrations of plasma ferritin (387,000 μg/L and 138,000 μg/L, respectively) are presented. In both cases, falsely lowered ferritin results were reported without any analyser flag.
View Article and Find Full Text PDFCockayne syndrome (CS) is a human DNA repair-deficient disease that involves transcription coupled repair (TCR), in which three gene products, Cockayne syndrome A (CSA), Cockayne syndrome B (CSB), and ultraviolet stimulated scaffold protein A (UVSSA) cooperate in relieving RNA polymerase II arrest at damaged sites to permit repair of the template strand. Mutation of any of these three genes results in cells with increased sensitivity to UV light and defective TCR. Mutations in CSA or CSB are associated with severe neurological disease but mutations in UVSSA are for the most part only associated with increased photosensitivity.
View Article and Find Full Text PDFCockayne syndrome is an autosomal recessive disease that covers a wide range of symptoms, from mild photosensitivity to severe neonatal lethal disorder. The pathology of Cockayne syndrome may be caused by several mechanisms such as a DNA repair deficiency, transcription dysregulation, altered redox balance and mitochondrial dysfunction. Conceivably each of these mechanisms participates during a different stage in life of a Cockayne syndrome patient.
View Article and Find Full Text PDFCockayne syndrome (CS) is a rare autosomal recessive neurodegenerative disease that is associated with mutations in either of two transcription-coupled DNA repair genes, CSA or CSB. Mice with a targeted mutation in the Csb gene (Cs-b(m/m)) exhibit a milder phenotype compared with human patients with mutations in the orthologous CSB gene. Mice mutated in Csb were crossed with mice lacking Xpc (Xp-c(-/-)), the global genome repair gene, to enhance the pathological symptoms.
View Article and Find Full Text PDFThe phosphorylation of H2Ax on its S139 site, γH2Ax, is important during DNA double-strand repair and is considered necessary for assembly of repair complexes, but its functional role after other kinds of DNA damage is less clear. We have measured the survival of isogenic mouse cell lines with the H2Ax gene knocked out, and replaced with wild-type or mutant (S139A) H2Ax genes, exposed to a range of agents with varied mechanisms of DNA damage. Knockout and mutant cells were sensitive to γ-rays, etoposide, temozolamide, and endogenously generated reactive oxygen species, each of which can include double-strand breaks among their spectra of DNA lesions.
View Article and Find Full Text PDFXPC, the main damage-recognition protein responsible for nucleotide excision repair of UVB damage to DNA, is lost or mutated in xeroderma pigmentosum group C (XP-C), a rare inherited disease characterized by high incidence and early onset of non-melanoma and melanoma skin cancers. The high incidence of skin cancers in XP-C patients suggests that loss of expression of XPC protein might also provide a selective advantage for initiation and progression of similar cancers in non XP-C patients in the general population. To test whether XPC is selectively lost in squamous cell carcinomas from non XP-C patients, we examined XPC expression by immunohistochemistry on a tissue microarray with 244 tissue cores, including in situ and invasive squamous-cell carcinomas (SCCs), keratoacanthoma (KA), and normal skin samples from both immunocompetent and immunosuppressed patients.
View Article and Find Full Text PDFUV irradiation induces histone variant H2AX phosphorylated on serine 139 (gammaH2AX) foci and high levels of pan-nuclear gammaH2AX staining without foci, but the significance of this finding is still uncertain. We examined the formation of gammaH2AX and 53BP1 that coincide at sites of double-strand breaks (DSBs) after ionizing radiation. We compared UV irradiation and treatment with etoposide, an agent that causes DSBs during DNA replication.
View Article and Find Full Text PDFNeuroblastoma is the most common extra-cranial solid childhood cancer; it arises from neural crest-derived cells of the sympathetic nervous system. The anomalous regulation of embryonic developmental pathways like Delta-Notch and Wnt has been implicated in aberrant cell growth and differentiation in many (childhood) tumours. We have previously found regulation of Delta-Notch pathway genes by the MSX1 neural crest development gene in a neuroblastoma cell line, and significant correlations between these genes in neuroblastic tumours.
View Article and Find Full Text PDFMutations in genes on the nucleotide excision repair pathway are associated with diseases, such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that involve skin cancer and developmental and neurological symptoms. These mutations cause the defective repair of damaged DNA and increased transcription arrest but, except for skin cancer, the links between repair and disease have not been obvious. Widely different clinical syndromes seem to result from mutations in the same gene, even when the mutations result in complete loss of function.
View Article and Find Full Text PDFCancer, aging, and neurodegeneration are all associated with DNA damage and repair in complex fashions. Aging appears to be a cell and tissue-wide process linked to the insulin-dependent pathway in several DNA repair deficient disorders, especially in mice. Cancer and neurodegeneration appear to have complementary relationships to DNA damage and repair.
View Article and Find Full Text PDFNeuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development.
View Article and Find Full Text PDFMultiple lines of evidence have provided compelling evidence for the existence of a tumor suppressor gene (TSG) on chromosome 7q31.1. ST7 may be the target of this genetic instability but its designation as a TSG is controversial.
View Article and Find Full Text PDFThe common pediatric tumor neuroblastoma originates from primitive neural crest-derived precursor cells of the peripheral nervous system. Neuroblastoma especially affects very young children, and can already be present at birth. Its early onset and cellular origin predict the involvement of developmental control genes in neuroblastoma etiology.
View Article and Find Full Text PDFWe discovered a 3,373-bp plasmid (pRT1) in the hyperthermophilic archaeon Pyrococcus sp. strain JT1. Two major open reading frames were identified, and analysis of the sequence revealed some resemblance to motifs typically found in plasmids that replicate via a rolling-circle mechanism.
View Article and Find Full Text PDF