Using a two-laser static tester, we measured the crystallization temperature and the thermal conductivity of a phase-change alloy thin film used in write-once-read-many media of optical data storage. The experimental technique, in general, and the calibration procedures, in particular, are described. The measurement results are used as entry points into numerical calculations that ultimately yield estimates of the material parameters.
View Article and Find Full Text PDFThalamocortical neurons innervating the barrel cortex in neonatal rodents transiently store serotonin (5-HT) in synaptic vesicles by expressing the plasma membrane serotonin transporter (5-HTT) and the vesicular monoamine transporter (VMAT2). 5-HTT knock-out (ko) mice reveal a nearly complete absence of 5-HT in the cerebral cortex by immunohistochemistry, and of barrels, both at P7 and adulthood. Quantitative electron microscopy reveals that 5-HTT ko affects neither the density of synapses nor the length of synaptic contacts in layer IV.
View Article and Find Full Text PDFBrain Res Mol Brain Res
November 1999
Polygenic factors play important roles in animal models of substance abuse and susceptibility to dopaminergic neurodegeneration. Genetic factors are also likely to contribute to the etiology of human drug abuse disorders, and may alter human vulnerabilities to Parkinsonian neurodegeneration. The dopamine transporter (DAT; SLC6A3) is densely expressed by the dopaminergic midbrain neurons that play central roles in drug reward and is believed to be a primary site of action for cocaine reward.
View Article and Find Full Text PDFCocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling through molecular interactions that are only partially understood. Cocaine analog structure-activity studies have suggested roles for both cationic and aromatic interactions among DAT, dopamine, and cocaine. We hypothesized that phenylalanine residues lying in putative DAT transmembrane (TM) domains were good candidates to contribute to aromatic and/or cationic interactions among DAT, dopamine, and cocaine.
View Article and Find Full Text PDFCocaine and methylphenidate block uptake by neuronal plasma membrane transporters for dopamine, serotonin, and norepinephrine. Cocaine also blocks voltage-gated sodium channels, a property not shared by methylphenidate. Several lines of evidence have suggested that cocaine blockade of the dopamine transporter (DAT), perhaps with additional contributions from serotonin transporter (5-HTT) recognition, was key to its rewarding actions.
View Article and Find Full Text PDFThe brain vesicular monoamine transporter (VMAT2) pumps monoamine neurotransmitters and Parkinsonism-inducing dopamine neurotoxins such as 1-methyl-4-phenyl-phenypyridinium (MPP+) from neuronal cytoplasm into synaptic vesicles, from which amphetamines cause their release. Amphetamines and MPP+ each also act at nonvesicular sites, providing current uncertainties about the contributions of vesicular actions to their in vivo effects. To assess vesicular contributions to amphetamine-induced locomotion, amphetamine-induced reward, and sequestration and resistance to dopaminergic neurotoxins, we have constructed transgenic VMAT2 knockout mice.
View Article and Find Full Text PDFRepeated doses of cocaine or amphetamine lead to long-lasting behavioral manifestations that include enhanced responses termed sensitization. Although biochemical mechanisms that underlie these manifestations currently remain largely unknown, new protein synthesis has been implicated in several of these neuroadaptive processes. To seek candidate biochemical mechanisms for these drug-induced neuroplastic behavioral responses, we have used an approach termed subtracted differential display (SDD) to identify genes whose expression is regulated by these psychostimulants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 1997
Morphine produces analgesia at opiate receptors expressed in nociceptive circuits. mu, delta, and kappa opiate receptor subtypes are expressed in circuits that can modulate nociception and receive inputs from endogenous opioid neuropeptide ligands. The roles played by each receptor subtype in nociceptive processing in drug-free and morphine-treated states have not been clear, however.
View Article and Find Full Text PDFIn an extension of our previous work, an antibody directed against a peptide from the N-terminal region of DAT was used to localize specific dopamine transporter immunoreactivity (DAT-IR) in several regions of rat brain. Apparent axons and varicosities were found in the zona incerta, external layer of the median eminence, various nuclei of the amygdala, the cortex-amygdala transition zone, and in periglomerular regions in the olfactory bulb. Apparent stained neuronal perikarya and dendrites were observed in the arcuate nucleus and olfactory bulb.
View Article and Find Full Text PDFThe dopamine transporter (DAT) is a primary site for the action of cocaine in inducing euphoria. Its action is necessary for the selectivities of dopaminergic neurotoxins that provide the best current experimental models of Parkinson's disease. In the present report, rat dopamine transporter-like immunoreactivity (iDAT) was assessed by immunohistochemistry using newly developed polyclonal antisera raised against conjugated peptides corresponding to sequences found in the dopamine transporter's carboxy- and amino-termini.
View Article and Find Full Text PDF