Objective: ECs lining arteries respond to LSS by suppressing pro-inflammatory changes, in part through the activation of MEK5, ERK5 and induction of KLF4. We examined if this anti-inflammatory pathway operates in human ECs lining microvessels, the principal site of inflammatory responses.
Methods: We used immunofluorescence microscopy of human skin to assess ERK5 activation and KLF4 expression in HDMECs in situ.
Biochem Biophys Res Commun
December 2008
We have identified two novel MEK5 inhibitors, BIX02188 and BIX02189, which inhibited catalytic function of purified, MEK5 enzyme. The MEK5 inhibitors blocked phosphorylation of ERK5, without affecting phosphorylation of ERK1/2 in sorbitol-stimulated HeLa cells. The compounds also inhibited transcriptional activation of MEF2C, a downstream substrate of the MEK5/ERK5 signaling cascade, in a cellular trans-reporter assay system.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2008
Steady laminar blood flow protects vessels from atherosclerosis. We showed that flow decreased tumor necrosis factor-alpha (TNF)-mediated VCAM1 expression in endothelial cells (EC) by inhibiting JNK. Here, we determined the relative roles of MEK1, MEK5 and their downstream kinases ERK1/2 and BMK1 (ERK5) in flow-mediated inhibition of JNK activation.
View Article and Find Full Text PDFIn this report we describe development and characterization of four human cell lines that are able to secrete insulin and C-peptide in response to higher concentrations of glucose. These cell lines have been developed by stably and constitutively expressing human proinsulin with a furin-cleavable site, whereas expression of furin is regulated by glucose concentration. These cell lines have been cloned and, therefore, the transgene in each cell is located in an identical location of the genome leading to a uniform expression.
View Article and Find Full Text PDFMany heat-shock proteins (Hsp) are members of evolutionarily conserved families of chaperone proteins that inhibit the aggregation of unfolded polypeptides and refold denatured proteins, thereby remedying phenotypic effects that may result from protein aggregation or protein instability. Here we report that the mitochondrial chaperone Hsp40, also known as Dnaja3 or Tid1, is differentially expressed during cardiac development and pathological hypertrophy. Mice deficient in Dnaja3 developed dilated cardiomyopathy (DCM) and died before 10 weeks of age.
View Article and Find Full Text PDF