Publications by authors named "Revathi Kodali"

Altered gamma-aminobutyric acid (GABA) function is consistently reported in psychiatric disorders, normal aging, and neurodegenerative disorders and reduced function of GABA interneurons is associated with both mood and cognitive symptoms. Benzodiazepines (BZ) have broad anxiolytic, but also sedative, anticonvulsant and amnesic effects, due to nonspecific GABA-A receptor (GABAA-R) targeting. Varying the profile of activity of BZs at GABAA-Rs is predicted to uncover additional therapeutic potential.

View Article and Find Full Text PDF

We report a 28-day repeat dose immunotoxicity evaluation of investigational drug MIDD0301, a novel oral asthma drug candidate that targets gamma amino butyric acid type A receptors (GABA R) in the lung. The study design employed oral administration of mice twice daily throughout the study period with 100 mg/kg MIDD0301 mixed in peanut butter. Compound dosing did not reveal signs of general toxicity as determined by animal weight, organ weight or haematology.

View Article and Find Full Text PDF

A novel class of bivalent ligands targeting putative protease-activated receptor (PAR) heteromers has been prepared based upon reported antagonists for the subtypes PAR1 and PAR2. Modified versions of the PAR1 antagonist RWJ-58259 containing alkyne adapters were connected via cycloaddition reactions to azide-capped polyethylene glycol (PEG) spacers attached to imidazopyridazine-based PAR2 antagonists. Initial studies of the PAR1-PAR2 antagonists indicated that they inhibited G alpha q-mediated calcium mobilization in endothelial and cancer cells driven by both PAR1 and PAR2 agonists.

View Article and Find Full Text PDF

Airway smooth muscle (ASM) cells express GABA A receptors (GABARs), and previous reports have demonstrated that GABAR activators relax ASM. However, given the activity of GABARs in central nervous system inhibitory neurotransmission, concern exists that these activators may lead to undesirable sedation. MIDD0301 is a novel imidazobenzodiazepine and positive allosteric modulator of the GABAR with limited brain distribution, thus eliminating the potential for sedation.

View Article and Find Full Text PDF

It is unclear whether GABA receptors (GABARs) that contain the α3-subunit are substantially involved in the anxiolytic effects of benzodiazepines (BDZs). In the present study, we tested YT-III-31, a newer BDZ ligand with functional preference for α3βγ2 GABARs, in two paradigms of unconditioned anxiety, the open field and elevated plus maze in rats. The effective dose of YT-III-31 (2 mg/kg) displayed a clear anxiolytic-like profile, unhampered by sedative action, in both tests.

View Article and Find Full Text PDF

We describe lead compound MIDD0301 for the oral treatment of asthma based on previously developed positive allosteric αβγ selective GABA receptor (GABAR) ligands. MIDD0301 relaxed airway smooth muscle at single micromolar concentrations as demonstrated with ex vivo guinea pig tracheal rings. MIDD0301 also attenuated airway hyperresponsiveness (AHR) in an ovalbumin murine model of asthma by oral administration.

View Article and Find Full Text PDF

Recent reports indicate that α6β2/3γ2 GABAR selective ligands may be important for the treatment of trigeminal activation-related pain and neuropsychiatric disorders with sensori-motor gating deficits. Based on 3 functionally α6β2/3γ2 GABAR selective pyrazoloquinolinones, 42 novel analogs were synthesized, and their in vitro metabolic stability and cytotoxicity as well as their in vivo pharmacokinetics, basic behavioral pharmacology, and effects on locomotion were investigated. Incorporation of deuterium into the methoxy substituents of the ligands increased their duration of action via improved metabolic stability and bioavailability, while their selectivity for the GABAR α6 subtype was retained.

View Article and Find Full Text PDF

A series of novel imidazobenzodiazepine analogs of the lead chiral ligand SH-053-2'F--CH (), an α2/α3/α5 (Bz)GABA (A)ergic receptor subtype selective ligand, which reversed PCP-induced prepulse inhibition (PPI) of acoustic startle, were synthesized. These chiral ()-CH ligands are targeted for the treatment of schizophrenia and depression. These new ligands were designed by modifying the liable ester functionality in to improve the metabolic stability, cytotoxicity, and activity as compared to .

View Article and Find Full Text PDF

We describe pharmacokinetic and pharmacodynamic properties of two novel oral drug candidates for asthma. Phenolic αβγ GABAR selective compound 1 and acidic αβγ selective GABAR positive allosteric modulator compound 2 relaxed airway smooth muscle ex vivo and attenuated airway hyperresponsiveness (AHR) in a murine model of asthma. Importantly, compound 2 relaxed acetylcholine contracted human tracheal airway smooth muscle strips.

View Article and Find Full Text PDF

γ-Aminobutyric acid type A (GABA) receptors are located in spinal nociceptive circuits where they modulate the transmission of pain sensory signals from the periphery to higher centers. Benzodiazepine-type drugs bind to GABA receptors containing α1, α2, α3, and α5 subunits (α1GABA, α2GABA, α3GABA and α5GABA receptors, respectively) through which they inhibit the transmission of these signals. In the present study we describe the novel benzodiazepine site positive allosteric modulator modulator methyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (MP-III-024).

View Article and Find Full Text PDF

We describe the synthesis of analogs of XHE-III-74, a selective α4β3γ2 GABAR ligand, shown to relax airway smooth muscle ex vivo and reduce airway hyperresponsiveness in a murine asthma model. To improve properties of this compound as an asthma therapeutic, a series of analogs with a deuterated methoxy group in place of methoxy group at C-8 position was evaluated for isotope effects in preclinical assays; including microsomal stability, cytotoxicity, and sensorimotor impairment. The deuterated compounds were equally or more metabolically stable than the corresponding non-deuterated analogs and increased sensorimotor impairment was observed for some deuterated compounds.

View Article and Find Full Text PDF

Recent studies have demonstrated that subtype-selective GABAA receptor modulators are able to relax precontracted human airway smooth muscle ex vivo and reduce airway hyper-responsiveness in mice upon aerosol administration. Our goal in this study was to investigate systemic administration of subtype-selective GABAA receptor modulators to alleviate bronchoconstriction in a mouse model of asthma. Expression of GABAA receptor subunits was identified in mouse lungs, and the effects of α4-subunit-selective GABAAR modulators, XHE-III-74EE and its metabolite XHE-III-74A, were investigated in a murine model of asthma (ovalbumin sensitized and challenged BALB/c mice).

View Article and Find Full Text PDF