Publications by authors named "Reuven Shavit"

Electroencephalogram (EEG) has evolved to be a well-established tool for imaging brain activity. This progress is mainly due to the development of high-resolution (HR) EEG methods. One class of HR-EEG is the cortical potential imaging (CPI), which aims to estimate the potential distribution on the cortical surface, which is much more informative than EEG.

View Article and Find Full Text PDF

The ability to control the energy flow of light at the nanoscale is fundamental to modern communication and big-data technologies, as well as quantum information processing schemes. However, since photons are diffraction-limited, efforts of confining them to dimensions of integrated electronics have so far proven elusive. A promising way to facilitate nanoscale manipulation of light is through plasmon polaritons-coupled excitations of photons and charge carriers.

View Article and Find Full Text PDF

Electroencephalography (EEG) is the single brain monitoring technique that is non-invasive, portable, passive, exhibits high-temporal resolution, and gives a directmeasurement of the scalp electrical potential. Amajor disadvantage of the EEG is its low-spatial resolution, which is the result of the low-conductive skull that "smears" the currents coming from within the brain. Recording brain activity with both high temporal and spatial resolution is crucial for the localization of confined brain activations and the study of brainmechanismfunctionality, whichis then followed by diagnosis of brain-related diseases.

View Article and Find Full Text PDF

The interaction of fast electrons with metal atoms may lead to optical excitations. This exciting phenomenon forms the basis for the most powerful inspection methods in nanotechnology, such as cathodoluminescence and electron-energy loss spectroscopy. However, direct nanoimaging of light based on electrons is yet to be introduced.

View Article and Find Full Text PDF

Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale.

View Article and Find Full Text PDF

The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light-matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations.

View Article and Find Full Text PDF

Surface plasmon polaritons (SPPs) may serve as ultimate data processing expedients in future nanophotonic applications. SPPs combine the high localization of electrons with the bandwidth, frequency and propagation properties of photons, thus supplying nature with the best of two worlds. However, although plasmonics have recently gained constantly growing scientific attention, logic devices that operate on SPPs on a deep nanometer scale are yet to be demonstrated.

View Article and Find Full Text PDF

We study a three-dimensional system of a rectangular waveguide resonator with an inserted thin ferrite disk. The interplay of reflection and transmission at the disk interfaces together with a material gyrotropy effect, gives rise to a rich variety of wave phenomena. We analyze the wave propagation based on full Maxwell-equation numerical solutions of the problem.

View Article and Find Full Text PDF