Ternary hybrid thin films composed of a diblock copolymer templating two types of nanoparticles (NPs) expand the functionality of binary systems, which renders them interesting for magnetic sensing or magnetic data storage applications. Herein, one-pot slot-die printed hybrid polystyrene--poly(methyl methacrylate) (PS--PMMA) thin films are prepared with iron oxide (magnetite, FeO, = 20 nm) and nickel NPs (Ni, = 46 nm) in one step by the advanced slot-die coating technique, which facilitates upscaling of fabrication. The evolution of the hybrid film morphology is probed with in situ grazing-incidence small-angle X-ray scattering and compared to that of a PS--PMMA thin film without NPs.
View Article and Find Full Text PDFChlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis.
View Article and Find Full Text PDFMultimodal in situ experiments during slot-die coating of thin films pioneer the way to kinetic studies on thin-film formation. They establish a powerful tool to understand and optimize the formation and properties of thin-film devices, e.g.
View Article and Find Full Text PDFis a Python-based software tool for processing and reducing 2D grazing-incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixel-wise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time-resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/GISAXS studies of thin films.
View Article and Find Full Text PDFThe largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods.
View Article and Find Full Text PDFIdentifying the two substrate water sites of nature's water-splitting cofactor (MnCaO cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved O-Electron-electron Double resonance detected NMR (TR-O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of HO to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the MnCaO cofactor after mixing with HO.
View Article and Find Full Text PDFPhotosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a MnCaO cluster that cycles through five oxidation states S ( = 0-4). The S state is the last metastable state before the O evolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
Perovskite solar cells (PSCs) have achieved competitive power conversion efficiencies compared with established solar cell technologies. However, their operational stability under different external stimuli is limited, and the underlying mechanisms are not fully understood. In particular, an understanding of degradation mechanisms from a morphology perspective during device operation is missing.
View Article and Find Full Text PDFAdditive and antisolvent engineering strategies are outstandingly efficient in enhancing perovskite quality, photovoltaic performance, and stability of perovskite solar cells (PSCs). In this work, an effective approach is applied by coupling the antisolvent mixture and multi-functional additive procedures, which is recognized as antisolvent additive engineering (AAE). The graphene quantum dots functionalized with amide (AGQDs), which consists of carbonyl, amine, and long hydrophobic alkyl chain functional groups, are added to the antisolvent mixture of toluene (T) and hexane (H) as an efficient additive to form the CHNHPbI (MAPI):AGQDs graded heterojunction structure.
View Article and Find Full Text PDFColloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBrI NCs as the model system, which in itself is considered a promising candidate for pure-red light-emitting diodes and top-cells for tandem photovoltaics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Light-harvesting complex II (LHCII) is the major antenna complex in higher plants and green algae. It has been suggested that a major part of the excited state energy dissipation in the so-called "non-photochemical quenching" (NPQ) is located in this antenna complex. We have performed an ultrafast kinetics study of the low-energy fluorescent states related to quenching in LHCII in both aggregated and the crystalline form.
View Article and Find Full Text PDFNon-photochemical quenching (NPQ) in photosynthetic organisms provides the necessary photoprotection that allows them to cope with largely and quickly varying light intensities. It involves deactivation of excited states mainly at the level of the antenna complexes of photosystem II using still largely unknown molecular mechanisms. In higher plants the main contribution to NPQ is the so-called qE-quenching, which can be switched on and off in a few seconds.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Nature's water splitting cofactor passes through a series of catalytic intermediates (S-S) before O-O bond formation and O release. In the second last transition (S to S) cofactor oxidation is coupled to water molecule binding to Mn1. It is this activated, water-enriched all Mn form of the cofactor that goes on to form the O-O bond, after the next light-induced oxidation to S How cofactor activation proceeds remains an open question.
View Article and Find Full Text PDFBackground: Early brain development is closely dictated by distinct neurobiological principles. Here, we aimed to map early trajectories of structural brain wiring in the neonatal brain.
Methods: We investigated structural connectome development in 44 newborns, including 23 preterm infants and 21 full-term neonates scanned between 29 and 45 postmenstrual weeks.
Converging evidence from activation, connectivity, and stimulation studies suggests that auditory brain networks are lateralized. Here we show that these findings can be at least partly explained by the asymmetric network embedding of the primary auditory cortices. Using diffusion-weighted imaging in 3 independent datasets, we investigate the propensity for left and right auditory cortex to communicate with other brain areas by quantifying the centrality of the auditory network across a spectrum of communication mechanisms, from shortest path communication to diffusive spreading.
View Article and Find Full Text PDFModularity is an important topological attribute for functional brain networks. Recent human fMRI studies have reported that modularity of functional networks varies not only across individuals being related to demographics and cognitive performance, but also within individuals co-occurring with fluctuations in network properties of functional connectivity, estimated over short time intervals. However, characteristics of these time-resolved functional networks during periods of high and low modularity have remained largely unexplored.
View Article and Find Full Text PDFDyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes.
View Article and Find Full Text PDFDopaminergic neurotransmission in the mesocortical system is crucial for higher order cognition. Common variation on the dopamine D2 receptor (DRD2) gene has been linked to individual differences in dopaminergic signaling and was also repeatedly associated to cognitive markers. The relationship between dopaminergic genetic variants and neurostructural properties of the mesocortical system, however, has received little attention so far.
View Article and Find Full Text PDFBackground: Attention deficit/hyperactivity disorder (ADHD) has frequently been associated with changes in resting-state functional connectivity, and decreased white matter (WM) integrity. In the current study, we investigated functional connectivity within Default Mode and frontal control resting-state networks (RSNs) in children with and without ADHD. We hypothesized the RSNs of interest would show a pattern of impaired functional integration and segregation and corresponding changes in WM structure.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses.
View Article and Find Full Text PDFThe cerebral cortex displays substantial variation in cellular architecture, a regional patterning that has been of great interest to anatomists for centuries. In 1925, Constantin von Economo and George Koskinas published a detailed atlas of the human cerebral cortex, describing a cytoarchitectonic division of the cortical mantle into over 40 distinct areas. Von Economo and Koskinas accompanied their seminal work with large photomicrographic plates of their histological slides, together with tables containing for each described region detailed morphological layer-specific information on neuronal count, neuron size and thickness of the cortical mantle.
View Article and Find Full Text PDF