Publications by authors named "Reumers J"

Background: The rising incidence of immune-mediated inflammatory diseases (IMID) requires innovative management strategies, including effective vaccination. We aimed to assess the impact of an electronic medical record (EMR)-integrated vaccination tool on vaccination coverage among patients with inflammatory bowel diseases (IBD), rheumatological and dermatological conditions.

Methods: A prospective observational study compared vaccination coverage before (2018) and after (2021) implementing the module.

View Article and Find Full Text PDF

Despite substantial progress in cancer microbiome research, recognized confounders and advances in absolute microbiome quantification remain underused; this raises concerns regarding potential spurious associations. Here we study the fecal microbiota of 589 patients at different colorectal cancer (CRC) stages and compare observations with up to 15 published studies (4,439 patients and controls total). Using quantitative microbiome profiling based on 16S ribosomal RNA amplicon sequencing, combined with rigorous confounder control, we identified transit time, fecal calprotectin (intestinal inflammation) and body mass index as primary microbial covariates, superseding variance explained by CRC diagnostic groups.

View Article and Find Full Text PDF

Colorectal cancers (CRCs) form a heterogenous group classified into epigenetic and transcriptional subtypes. The basis for the epigenetic subtypes, exemplified by varying degrees of promoter DNA hypermethylation, and its relation to the transcriptional subtypes is not well understood. We link cancer-specific transcription factor (TF) expression alterations to methylation alterations near TF-binding sites at promoter and enhancer regions in CRCs and their premalignant precursor lesions to provide mechanistic insights into the origins and evolution of the CRC molecular subtypes.

View Article and Find Full Text PDF

The search for chemical hit material is a lengthy and increasingly expensive drug discovery process. To improve it, ligand-based quantitative structure-activity relationship models have been broadly applied to optimize primary and secondary compound properties. Although these models can be deployed as early as the stage of molecule design, they have a limited applicability domain─if the structures of interest differ substantially from the chemical space on which the model was trained, a reliable prediction will not be possible.

View Article and Find Full Text PDF

Objective: CD4+ T cells are implicated in rheumatoid arthritis (RA) pathology from the strong association between RA and certain HLA class II gene variants. This study was undertaken to examine the synovial T cell receptor (TCR) repertoire, T cell phenotypes, and T cell specificities in small joints of RA patients at time of diagnosis before therapeutic intervention.

Methods: Sixteen patients, of whom 11 patients were anti-citrullinated protein antibody (ACPA)-positive and 5 patients were ACPA-, underwent ultrasound-guided synovial biopsy of a small joint (n = 13) or arthroscopic synovial biopsy of a large joint (n = 3), followed by direct sorting of single T cells for paired sequencing of the αβ TCR together with flow cytometry analysis.

View Article and Find Full Text PDF

Controversies remain regarding the preferred treatment strategy for central introital dyspareunia. The primary goal of this retrospective study was to evaluate the short- and long-term outcomes after operative management of central introital dyspareunia by widening hymenoplasty. In total, 513 patients were included, with a follow-up time of 10 years.

View Article and Find Full Text PDF

Background: Multiplexing of samples in single-cell RNA-seq studies allows a significant reduction of the experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or -lipids allow barcoding sample-specific cells, a process called "hashing."

Results: Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq.

View Article and Find Full Text PDF

Objective: To study the contagiousness of sperm and its influence on fertility after recovery from COVID-19 infection.

Design: Prospective cohort study.

Setting: University medical center.

View Article and Find Full Text PDF

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e.

View Article and Find Full Text PDF

Background: Gene expression-based profiling of colorectal cancer (CRC) can be used to identify four molecularly homogeneous consensus molecular subtype (CMS) groups with unique biologic features. However, its applicability to colorectal premalignant lesions remains unknown.

Patients And Methods: We assembled the largest transcriptomic premalignancy dataset by integrating different public and proprietary cohorts of adenomatous and serrated polyps from sporadic (N = 311) and hereditary (N = 78) patient populations and carried out a comprehensive analysis of carcinogenesis pathways using the CMS random forest (RF) classifier.

View Article and Find Full Text PDF

Tauopathies such as frontotemporal dementia (FTD) remain incurable to date, partially due to the lack of translational in vitro disease models. The MAPT gene, encoding the microtubule-associated protein tau, has been shown to play an important role in FTD pathogenesis. Therefore, we used zinc finger nucleases to introduce two MAPT mutations into healthy donor induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

The identification of functional non-coding mutations is a key challenge in the field of genomics. Here we introduce μ-cisTarget to filter, annotate and prioritize cis-regulatory mutations based on their putative effect on the underlying "personal" gene regulatory network. We validated μ-cisTarget by re-analyzing the TAL1 and LMO1 enhancer mutations in T-ALL, and the TERT promoter mutation in melanoma.

View Article and Find Full Text PDF

Background: Alternative gene splicing is a common phenomenon in which a single gene gives rise to multiple transcript isoforms. The process is strictly guided and involves a multitude of proteins and regulatory complexes. Unfortunately, aberrant splicing events do occur which have been linked to genetic disorders, such as several types of cancer and neurodegenerative diseases (Fan et al.

View Article and Find Full Text PDF

Given the current cost-effectiveness of next-generation sequencing, the amount of DNA-seq and RNA-seq data generated is ever increasing. One of the primary objectives of NGS experiments is calling genetic variants. While highly accurate, most variant calling pipelines are not optimized to run efficiently on large data sets.

View Article and Find Full Text PDF

Background: Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.

View Article and Find Full Text PDF

elPrep is a high-performance tool for preparing sequence alignment/map files for variant calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and so on, while producing identical results. What sets elPrep apart is its software architecture that allows executing preparation pipelines by making only a single pass through the data, no matter how many preparation steps are used in the pipeline.

View Article and Find Full Text PDF

Massively parallel sequencing (MPS) technology has opened new avenues to study viral dynamics and treatment-induced resistance mechanisms of infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Whereas the Roche/454 platform has been used widely for the detection of low-frequent drug resistant variants, more recently developed short-read MPS technologies have the advantage of delivering a higher sequencing depth at a lower cost per sequenced base. This study assesses the performance characteristics of Illumina MPS technology for the characterization of genetic variability in viral populations by deep sequencing.

View Article and Find Full Text PDF

Background: Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a quadruplet of intensities, one channel for each nucleotide type for Illumina sequencing.

View Article and Find Full Text PDF

Motivation: Post-sequencing DNA analysis typically consists of read mapping followed by variant calling. Especially for whole genome sequencing, this computational step is very time-consuming, even when using multithreading on a multi-core machine.

Results: We present Halvade, a framework that enables sequencing pipelines to be executed in parallel on a multi-node and/or multi-core compute infrastructure in a highly efficient manner.

View Article and Find Full Text PDF

The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.

View Article and Find Full Text PDF

Motivation: In virology, massively parallel sequencing (MPS) opens many opportunities for studying viral quasi-species, e.g. in HIV-1- and HCV-infected patients.

View Article and Find Full Text PDF

DNA replication errors that persist as mismatch mutations make up the molecular fingerprint of mismatch repair (MMR)-deficient tumors and convey them with resistance to standard therapy. Using whole-genome and whole-exome sequencing, we here confirm an MMR-deficient mutation signature that is distinct from other tumor genomes, but surprisingly similar to germ-line DNA, indicating that a substantial fraction of human genetic variation arises through mutations escaping MMR. Moreover, we identify a large set of recurrent indels that may serve to detect microsatellite instability (MSI).

View Article and Find Full Text PDF

Background: Tumor cells in the blood of patients with metastatic carcinomas are associated with poor survival. Knowledge of the cells' genetic make-up can help to guide targeted therapy. We evaluated the efficiency and quality of isolation and amplification of DNA from single circulating tumor cells (CTC).

View Article and Find Full Text PDF

Summary: Pipit is a gene-centric interactive visualization tool designed to study structural genomic variations. Through focusing on individual genes as the functional unit, researchers are able to study and generate hypotheses on the biological impact of different structural variations, for instance, the deletion of dosage-sensitive genes or the formation of fusion genes. Pipit is a cross-platform Java application that visualizes structural variation data from Genome Variation Format files.

View Article and Find Full Text PDF