Lipids represent the most diverse pool of metabolites found in cells, facilitating compartmentation, signaling, and other functions. Dysregulation of lipid metabolism is linked to disease states such as cancer and neurodegeneration. However, limited tools are available for quantifying metabolic fluxes across the lipidome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Histone Deacetylase 3 (HDAC3) function in vivo is nuanced and directed in a tissue-specific fashion. The importance of HDAC3 in mutant lung tumors has recently been identified, but HDAC3 function in this context remains to be fully elucidated. Here, we identified HDAC3 as a lung tumor cell-intrinsic transcriptional regulator of the tumor immune microenvironment.
View Article and Find Full Text PDFUnlabelled: The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression.
View Article and Find Full Text PDFThe limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression.
View Article and Find Full Text PDFAdenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood.
View Article and Find Full Text PDFProliferating cells rely on acetyl-CoA to support membrane biogenesis and acetylation. Several organelle-specific pathways are available for provision of acetyl-CoA as nutrient availability fluctuates, so understanding how cells maintain acetyl-CoA homeostasis under such stresses is critically important. To this end, we applied C isotope tracing cell lines deficient in these mitochondrial [ATP-citrate lyase (ACLY)]-, cytosolic [acetyl-CoA synthetase (ACSS2)]-, and peroxisomal [peroxisomal biogenesis factor 5 (PEX5)]-dependent pathways.
View Article and Find Full Text PDFThe limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression.
View Article and Find Full Text PDFCells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex.
View Article and Find Full Text PDFHDAC3 is one of the main targets of histone deacetylase (HDAC) inhibitors in clinical development as cancer therapies, yet the in vivo role of HDAC3 in solid tumors is unknown. We identified a critical role for HDAC3 in -mutant lung cancer. Using genetically engineered mouse models (GEMMs), we found that HDAC3 is required for lung tumor growth in vivo.
View Article and Find Full Text PDFUnlabelled: KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1).
View Article and Find Full Text PDFDisrupted circadian rhythmicity is a prominent feature of modern society and has been designated as a probable carcinogen by the World Health Organization. However, the biological mechanisms that connect circadian disruption and cancer risk remain largely undefined. We demonstrate that exposure to chronic circadian disruption [chronic jetlag (CJL)] increases tumor burden in a mouse model of KRAS-driven lung cancer.
View Article and Find Full Text PDFDuring the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-β 1-42 oligomers (Aβ42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APP knockin human ES cell line.
View Article and Find Full Text PDFJ Natl Cancer Inst
September 2022
The capacity and diversity of the oncology leadership workforce has not kept pace with the emerging needs of our increasingly complex cancer centers and the spectrum of challenges our institutions face in reducing the cancer burden in diverse catchment areas. Recognizing the importance of a diverse workforce to reduce cancer inequities, the Association of American Cancer Institutes conducted a survey of its 103 cancer centers to examine diversity in leadership roles from research program leaders to cancer center directors. A total of 82 (80%) centers responded, including 64 National Cancer Institute-designated and 18 emerging centers.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is a master regulator of cellular energetics which coordinates metabolism by phosphorylating a plethora of substrates throughout the cell. But how AMPK activity is regulated at different subcellular locations for precise spatiotemporal control over metabolism is unclear. Here we present a sensitive, single-fluorophore AMPK activity reporter (ExRai AMPKAR), which reveals distinct kinetic profiles of AMPK activity at the mitochondria, lysosome, and cytoplasm.
View Article and Find Full Text PDFMitochondria are central to metabolic homeostasis, and progressive mitochondrial defects have diverse metabolic consequences that could drive distinct pathophysiological states. Here, we comprehensively characterized metabolic alterations in mice. Plasma alanine increased markedly with time, with other organic acids accumulating to a lesser extent.
View Article and Find Full Text PDFThe evolution of AMPK and its homologs enabled exquisite responsivity and control of cellular energetic homeostasis. Recent work has been critical in establishing the mechanisms that determine AMPK activity, novel targets of AMPK action, and the distribution of AMPK-mediated control networks across the cellular landscape. The role of AMPK as a hub of metabolic control has led to intense interest in pharmacologic activation as a therapeutic avenue for a number of disease states, including obesity, diabetes, and cancer.
View Article and Find Full Text PDFThe serine/threonine kinase ULK1 mediates autophagy initiation in response to various cellular stresses, and genetic deletion of ULK1 leads to accumulation of damaged mitochondria. Here we identify Parkin, the core ubiquitin ligase in mitophagy, and PARK2 gene product mutated in familial Parkinson's disease, as a ULK1 substrate. Recent studies uncovered a nine residue ("ACT") domain important for Parkin activation, and we demonstrate that AMPK-dependent ULK1 rapidly phosphorylates conserved serine108 in the ACT domain in response to mitochondrial stress.
View Article and Find Full Text PDFPrevious work has suggested androgen receptor (AR) signaling mediates prostate cancer progression in part through the modulation of autophagy. However, clinical trials testing autophagy inhibition using chloroquine derivatives in men with castration-resistant prostate cancer (CRPC) have yet to yield promising results, potentially due to the side effects of this class of compounds. We hypothesized that identification of the upstream activators of autophagy in prostate cancer could highlight alternative, context-dependent targets for blocking this important cellular process during disease progression.
View Article and Find Full Text PDFInhibition of autophagy, the major cellular recycling pathway in mammalian cells, is a promising strategy for the treatment of triple-negative breast cancer (TNBC). We previously reported SBI-0206965, a small molecule inhibitor of unc-51-like autophagy activating kinase 1 (ULK1), which is a key regulator of autophagy initiation. Herein, we describe the design, synthesis, and characterization of new dual inhibitors of ULK1 and ULK2 (ULK1/2).
View Article and Find Full Text PDFDespite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1.
View Article and Find Full Text PDFMetformin is the front-line treatment for type 2 diabetes worldwide. It acts via effects on glucose and lipid metabolism in metabolic tissues, leading to enhanced insulin sensitivity. Despite significant effort, the molecular basis for metformin response remains poorly understood, with a limited number of specific biochemical pathways studied to date.
View Article and Find Full Text PDFRecent advances in genome editing technologies have enabled the insertion of epitope tags at endogenous loci with relative efficiency. We describe an approach for investigation of protein interaction dynamics of the AMP-activated kinase complex AMPK using a catalytic subunit AMPKα2 ( gene) as the bait, based on CRISPR/Cas9-mediated genome editing coupled to stable isotope labeling in cell culture, multidimensional protein identification technology, and computational and statistical analyses. Furthermore, we directly compare this genetic epitope tagging approach to endogenous immunoprecipitations of the same gene under homologous conditions to assess differences in observed interactors.
View Article and Find Full Text PDFThe LKB1 tumor suppressor is often mutationally inactivated in non-small cell lung cancer (NSCLC). LKB1 phosphorylates and activates members of the AMPK family of Ser/Thr kinases. Within this family, the salt-inducible kinases (SIKs) modulate gene expression in part via the inhibitory phosphorylation of the CRTCs, coactivators for CREB (cAMP response element-binding protein).
View Article and Find Full Text PDFMutations in the LKB1 (also known as ) tumor suppressor are the third most frequent genetic alteration in non-small cell lung cancer (NSCLC). encodes a serine/threonine kinase that directly phosphorylates and activates 14 AMPK family kinases ("AMPKRs"). The function of many of the AMPKRs remains obscure, and which are most critical to the tumor-suppressive function of LKB1 remains unknown.
View Article and Find Full Text PDF