Publications by authors named "Reuben S Harris"

The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels.

View Article and Find Full Text PDF

2'- -ribose methylation of the first transcribed base (adenine or A in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A has not been fully understood. We present a ∼ 2.

View Article and Find Full Text PDF

Unlabelled: Zoonotic viruses are an omnipresent threat to global health. Influenza A virus (IAV) transmits between birds, livestock, and humans. Proviral host factors involved in the cross-species interface are well known.

View Article and Find Full Text PDF

APOBEC3B (A3B) is implicated in DNA mutations that facilitate tumor evolution. Although structures of its individual N- and C-terminal domains (NTD and CTD) have been resolved through X-ray crystallography, the full-length A3B (fl-A3B) structure remains elusive, limiting understanding of its dynamics and mechanisms. In particular, the APOBEC3B C-terminal domain (A3Bctd) active site is frequently closed in models and structures.

View Article and Find Full Text PDF

The APOBEC3 family of polynucleotide cytidine deaminases has diverse roles as viral restriction factors and oncogenic mutators. These enzymes convert cytidine to uridine in single-stranded (ss)DNA, inducing genomic mutations that promote drug resistance and tumor heterogeneity. Of the seven human APOBEC3 members, APOBEC3A (A3A) and APOBEC3B (A3B) are most implicated in driving pro-tumorigenic mutations.

View Article and Find Full Text PDF

Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3).

View Article and Find Full Text PDF

In recent years, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become ever more apparent. This growing awareness and lack of inhibitory drugs has created a distinct need for biochemical tools that can be used to identify and characterize potential inhibitors of this family of enzymes. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay.

View Article and Find Full Text PDF

SARS-CoV-2 nucleocapsid (N) protein is a structural component of the virus with essential roles in the replication and packaging of the viral RNA genome. The N protein is also an important target of COVID-19 antigen tests and a promising vaccine candidate along with the spike protein. Here, we report a compact stem-loop DNA aptamer that binds tightly to the N-terminal RNA-binding domain of SARS-CoV-2 N protein.

View Article and Find Full Text PDF
Article Synopsis
  • DNA deaminase toxins, like the single-stranded DNA deaminase SsdA, play roles in bacterial competition and genetic diversity while also serving as tools for genome engineering.
  • The crystal structure of SsdA bound to single-stranded DNA shows a unique binding mode that allows for broad substrate selectivity, characterized by a V-shaped conformation around the target cytosine.
  • Key findings include the identification of a β-amino acid isoaspartate in SsdA that's crucial for its activity and stability, paving the way for engineered mutants that could be used in human cells for future genome editing applications.
View Article and Find Full Text PDF

Nirmatrelvir was the first protease inhibitor specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, SARS2) is responsible for the COVID-19 pandemic and infections that continue to affect the lives of millions of people worldwide, especially those who are older and/or immunocompromised. The SARS2 main protease enzyme, M (also called 3C-like protease, 3CL), is a bona fide drug target as evidenced by potent inhibition with nirmatrelvir and ensitrelvir, the active components of the drugs Paxlovid and Xocova, respectively. However, the existence of nirmatrelvir and ensitrelvir-resistant isolates underscores the need to develop next-generation drugs with different resistance profiles and/or distinct mechanisms of action.

View Article and Find Full Text PDF

Zika virus (ZIKV) continues to pose a significant global public health threat, with recurring regional outbreaks and potential for pandemic spread. Despite often being asymptomatic, ZIKV infections can have severe consequences, including neurological disorders and congenital abnormalities. Unfortunately, there are currently no approved vaccines or antiviral drugs for the prevention or treatment of ZIKV.

View Article and Find Full Text PDF

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay.

View Article and Find Full Text PDF

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay.

View Article and Find Full Text PDF

Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers.

View Article and Find Full Text PDF

APOBEC3B cytosine deaminase contributes to the mutational burdens of tumors, resulting in tumor progression and therapy resistance. Small molecule APOBEC3B inhibitors have potential to slow or mitigate these detrimental outcomes. Through molecular dynamics (MD) simulations and computational solvent mapping analysis, we identified a novel putative allosteric pocket on the C-terminal domain of APOBEC3B (A3Bctd), and virtually screened the ChemBridge Diversity Set (N~110,000) against both the active and potential allosteric sites.

View Article and Find Full Text PDF

APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B). However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Human retroviruses like HIV and HTLV-1 originate from simian viruses and can lead to serious diseases in humans, despite being less harmful to their natural hosts.
  • Research revealed that the human protein APOBEC3G (A3G) causes G-to-A mutations primarily in HTLV-1, while HTLV-2 and STLV-1 have mechanisms to resist these mutations.
  • The study found that the antisense proteins from these retroviruses interact differently with A3G, with HTLV-1 exploiting A3G to promote cell growth in a way tied to cancer development, while HTLV-2 and STLV-1 do not have this effect.
View Article and Find Full Text PDF

Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated.

View Article and Find Full Text PDF

Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study and expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas is expressed in keratinocytes entering mitosis, we show that expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3).

View Article and Find Full Text PDF

In this issue of Molecular Cell, Vaisvila et al. report a tour de force functional characterization of a large and highly diverse set of polynucleotide cytosine deaminase (PCD) enzymes, which is already propelling new biotechnology applications.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the APOBEC3B (A3B) enzyme in lung cancer, specifically in non-small-cell lung cancer (NSCLC) driven by the epidermal growth factor receptor (EGFR).
  • It was found that A3B expression can limit tumor growth in mouse models but is linked to resistance against EGFR-targeted therapies in tumors.
  • The research suggests that A3B could be targeted to improve the effectiveness of cancer treatments, as its upregulation was observed in both preclinical models and patients undergoing EGFR-targeted therapy.
View Article and Find Full Text PDF

A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H.

View Article and Find Full Text PDF

Background: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied.

Results: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing.

View Article and Find Full Text PDF