During the rapid final stage of growth, chicken oocytes take up massive amounts of plasma components and convert them to yolk. The oocyte expresses a receptor that binds both major yolk lipoprotein precursors, vitellogenin (VTG) and very low density lipoprotein (VLDL). In the present study, in vivo transport tracing methodology, isolation of coated vesicles, ligand- and immuno-blotting, and ultrastructural immunocytochemistry were used for the analysis of receptor-mediated yolk formation.
View Article and Find Full Text PDFUpon receptor-mediated endocytosis of very-low-density lipoprotein (VLDL) and vitellogenin into growing chicken oocytes, the protein moieties of these lipoproteins are proteolytically cleaved. Unlike the complete lysosomal degradation in somatic cells, enzymatic ligand breakdown in oocytes generates a characteristic set of polypeptides, which enter yolk storage compartments for subsequent utilization by the embryo. Here, we demonstrate directly that the catalyst for the intraoocytic processing of both apolipoprotein B and vitellogenin is cathepsin D.
View Article and Find Full Text PDFOur recently found nonlipoprotein inhibitor of chylomicron remnant uptake, lactoferrin, has been investigated in vivo and in vitro. Lipoprotein lipase extracted triglycerides from chylomicrons, doubly labeled with [3H]retinol/[14C]oleate, in the presence of lactoferrin normally. The subsequent uptake of remnants into liver was retarded considerably.
View Article and Find Full Text PDFWe have investigated uptake of 125I-labeled chylomicron remnants into livers of rats in the presence of lactoferrin. This glycoprotein possesses a cluster of four arginines at the N-terminus similar to the arginine rich binding sequence of apoprotein E (apoE) to the LDL-receptor. We found that this protein inhibits uptake of 125I-chylomicron remnant radioactivity by 50% when measured as accumulation of radioactivity into the intact organ, and even more pronounced, over 75%, when measured as uptake into an endosomal fraction prepared therefrom.
View Article and Find Full Text PDFBiochim Biophys Acta
March 1988
Radioactively labelled transferrin was injected into rats intravenously and its uptake and subcellular distribution in the liver was investigated. The amount of radioactivity in the liver remained constant from 10 min after injection. It was not influenced by asialoglycoproteins.
View Article and Find Full Text PDF