Publications by authors named "Retulainen E"

TEMPO-oxidized cellulose nanofibrils (TCNFs) have unique properties, which can be utilised in many application fields from printed electronics to packaging. Visual characterisation of TCNFs has been commonly performed using Scanning Electron Microscopy (SEM). However, a novel imaging technique, Helium Ion Microscopy (HIM), offers benefits over SEM, including higher resolution and the possibility of imaging non-conductive samples uncoated.

View Article and Find Full Text PDF

Fibre bonds play an essential role in various properties of paper. Much research has focused on their strength, but the determination of the actual contact area also provides a challenge. Many of the research methods rely on optical tools, which are restricted by the wavelength of light that is utilised.

View Article and Find Full Text PDF

We present the preparation, morphological analysis, and rheological characterization of ultra-low solid content gels prepared by physically cross-linking TEMPO-oxidized cellulose nanofibrils (TEMPO-CNF) with the soluble plant-cell-wall polysaccharide, mixed-linkage β-glucan (MLG). Of particular note, gel formation was rapidly induced by very small amounts of MLG (e.g.

View Article and Find Full Text PDF

As a type of functional group, azo-derivatives are commonly used to synthesize responsive materials. Cellulose nanocrystals (CNCs), prepared by acid hydrolysis of cotton, were dewatered and reacted with 2-bromoisobuturyl bromide to form a macro-initiator, which grafted 6-[4-(4-methoxyphenyl-azo) phenoxy] hexyl methacrylate (MMAZO) via atom transfer radical polymerization. The successful grafting was supported by Fourier transform infrared spectroscopy (FT-IR) and Solid magnetic resonance carbon spectrum (MAS C-NMR).

View Article and Find Full Text PDF

Wood fiber-based packaging materials, as renewable materials, have growing market potential due to their sustainability. A new breakthrough in cellulose-based packaging requires some improvement in the mechanical properties of paper. Bleached softwood kraft pulp was mechanically treated, in two stages, using high- and low-consistency refining, sequentially.

View Article and Find Full Text PDF

Cellulose fiber has been modified by mechanical and chemical means in order to improve paper properties, which respond to moisture and temperature. When the cellulose is first refined and then etherified using hydroxypropylation under dry conditions, the paper sheets prepared from the hydroxypropylated cellulose show improved elongation. When the level of hydroxypropylation is high enough, the paper sheets also become transparent.

View Article and Find Full Text PDF