Publications by authors named "Rettori C"

Niobium carbide (NbC) is a high-field type II superconductor with a critical temperature () of 11.1 K, slightly exceeding that of pure Nb ( = 9 K). The reduction of NbC to the nanoparticle scale leads to significant changes in its critical field and/or the superconducting temperature.

View Article and Find Full Text PDF

Objectives: The depth of cure using blue-light photocuring units (BL) is limited by tooth structure and qualities of the restorative material through which the activating wavelength must pass. Recent developments incorporate an infrared (IR) activated upconversion (UC) fluorescence of a lining agent filled with nanocrystals of NaYF4 and doped with YB+3 and Tm+3 that emit both blue and violet light locally at the interface of the liner and restorative resin. The purpose of this study was to evaluate the BL and 975 nm infrared (IR) light power transmission through dental tissues and restorative materials.

View Article and Find Full Text PDF

Magnetic bioactive glass-ceramics are biomaterials applied for magnetic hyperthermia in bone cancer treatment, thereby treating the bone tumor besides regenerating the damaged bone. However, combining high bioactivity and high saturation magnetization remains a challenge since the thermal treatment step employed to grow magnetic phases is also related to loss of bioactivity. Here, we propose a new nanocomposite made of superparamagnetic iron oxide nanoparticles (SPIONs) dispersed in a sol-gel-derived bioactive glass matrix, which does not need any thermal treatment for crystallization of magnetic phases.

View Article and Find Full Text PDF

The purpose of this study was to describe the synthesis, characterization, and functionalization of b-NaYF4:30%Yb/0.5%Tm upconverting nanocrystals for use as nanofillers in a dental adhesive and microscopically evaluate the interface between the particles and a commercial adhesive. The upconverting nanoparticles were synthesized and purified by thermal decomposition, and their chemical composition determined by energy dispersive X-Ray spectroscopy.

View Article and Find Full Text PDF

Photon upconversion taking place in small rare-earth-doped nanoparticles has been recently observed to be thermally modulated in an anomalous manner, showing thermal enhancement of the emission intensity. This effect was proved to be linked to the role of adsorbed water molecules as surface quenchers. The surface capping of the particles has a direct influence on the thermal dynamics of water adsorption and desorption, and therefore on the optical properties.

View Article and Find Full Text PDF

Although the three main phases of iron oxide - hematite, maghemite, and magnetite - exhibit superparamagnetic properties at the nanoscale, only maghemite and magnetite phases have been explored in magnetic bioactive glass-ceramics aimed at applications in cancer treatment by hyperthermia. In this work, it is reported for the first time the superparamagnetic properties of hematite nanocrystals grown in a 58S bioactive glass matrix derived from sol-gel synthesis. The glass-ceramics are based on the (100-x)(58SiO-33CaO-9PO)-xFeO system (x = 10, 20 and 30 wt%).

View Article and Find Full Text PDF

Luminescent nanothermometry uses the light emission from nanostructures for temperature measuring. Non-contact temperature readout opens new possibilities of tracking thermal flows at the sub-micrometer spatial scale, that are altering our understanding of heat-transfer phenomena occurring at living cells, micro electromagnetic machines or integrated electronic circuits, bringing also challenges of calibrating the luminescent nanoparticles for covering diverse temperature ranges. In this work, we report self-calibrated double luminescent thermometers, embedding in a poly(methyl methacrylate) film Er- and Tm-doped upconverting nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • Upconversion is a process where low-energy photons are converted into higher-energy ones, enabling various applications like bio-imaging, solar cells, and anti-counterfeiting.
  • The study focuses on creating nanocomposite materials using upconversion nanoparticles (UCNPs) mixed with polymers, allowing for easy processing into thin films that can be patterned at the micro-scale.
  • The research highlights strategies for designing optical devices, capitalizing on the unique thermal properties of UCNPs, leading to enhanced thermal sensitivity and local heating effects in structured materials.
View Article and Find Full Text PDF

Plasmon enhancement of luminescence is a common strategy to boost the efficiency of both fluorescence and upconversion via the augmented local electromagnetic field. However, the local heating produced when exciting the plasmon resonance of metallic nanoparticles is often overlooked. As higher temperatures are usually detrimental for radiative processes, only the electromagnetic contribution is exploited for enhancement.

View Article and Find Full Text PDF

Electron spin resonance (ESR) of diluted Nd(3+) ions in the topologically nontrivial semimetallic (TNSM) YBiPt compound is reported. The cubic YBiPt compound is a non-centrosymmetric half Heusler material which crystallizes in the F43m space group. The low temperature Nd(3+) ESR spectra showed a g-value of 2.

View Article and Find Full Text PDF

β-YbAlB4 has become one of the most studied heavy fermion systems since its discovery due to its remarkable physical properties. This system is the first reported Yb-based heavy-fermion superconductor (HFS) for which the low-T superconducting state emerges from a non-fermi-liquid (NFL) normal state associated with quantum criticality Nakatsuji et al 2008 Nature 4 603. Additionally, it presents a striking and unprecedented electron spin resonance (ESR) signal which behaves as a conduction electron spin resonance (CESR) at high temperatures and acquires features of the Yb(3+) local moment ESR at low temperatures.

View Article and Find Full Text PDF

Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.

View Article and Find Full Text PDF

This work reports on electron spin resonance experiments in oriented single crystals of the hexagonal AlB2 diboride compound (P6/mmm, D16h structure) which display conduction electron spin resonance. The X-band electron spin resonance spectra showed a metallic Dysonian resonance with g-value and intensity independent of temperature. The thermal broadening of the anisotropic electron spin resonance linewidth ΔH tracks the T-dependence of the electrical resistivity below T is approximately equal to 100 K.

View Article and Find Full Text PDF

The LaIn(3-x)Sn(x) alloy system is composed of superconducting Pauli paramagnets. For LaIn3 the superconducting critical temperature T(c) is approximately 0.7 K and it shows an oscillatory dependence as a function of Sn substitution, presenting its highest value T(c) ≈ 6.

View Article and Find Full Text PDF

Electron spin resonance (ESR) can probe conduction electrons (CE) and local moment (LM) spin systems in different materials. A CE spin resonance (CESR) is observed in metallic systems based on light elements or with enhanced Pauli susceptibility. LM ESR can be seen in compounds with paramagnetic ions and localized d or f electrons.

View Article and Find Full Text PDF

Specific heat, magnetization and electron spin resonance (ESR) data obtained from a self-standing film of the doped plasticized polyaniline (PANI-DB3EPSA)(0.5) are shown. No long range magnetic order has been observed at zero magnetic field, above 2 K.

View Article and Find Full Text PDF

The Electron Spin Resonance (ESR) of diluted magnetic ions (MI) of Er3+, Yb3+ and Mn2+ in Ag nanoparticles (NPs) is reported. Monodisperse samples of Ag NPs doped with these MI were synthesized by reducing silver nitrate and MI-oxides. This simple method can be extended to all rare-earths.

View Article and Find Full Text PDF

This paper presents the synthesis and characterization of colloidal NaYF4 and NaYF4:20% Gd lanthanide nanocrystals. The nanoparticles were prepared by chemical route using co-thermolysis of Na(CF3COO), Y(CF3COO)3 and Gd(CF3COO)3 precursor in oleylamine surfactant/phenylether at Ts = 250 degrees C. By tuning the precursor/surfactant molar ratio during the process, it was possible to control the crystalline phase, chemical order and size of the nanocrystals.

View Article and Find Full Text PDF

We report an alternative synthesis method and novel magnetic properties of Ni-oxide nanoparticles (NPs). The NPs were prepared by thermal decomposition of nickel phosphine complexes in a high-boiling-point organic solvent. These particles exhibit an interesting morphology constituted by a crystalline core and a broad disordered superficial shell.

View Article and Find Full Text PDF

This work presents a systematic Raman scattering study and first-principles calculations for the EuB(6) system. Evidence for the presence of an incipient (∼1 × 10(-4) Å) tetragonal symmetry break of its crystalline structure was found. Forbidden Raman modes at ω(fRm(1))∼1170 cm(-1), ω(fRm(2))∼1400 cm(-1), and ω(fRm(3))∼1500  cm(-1) were observed.

View Article and Find Full Text PDF

Neutron-diffraction measurements in LaCrSb3 show a coexistence of ferromagnetic and antiferromagnetic sublattices below T(C)=126 K, with ordered moments of 1.65(4) and 0.49(4)mu(B)/formula unit, respectively (T=10 K), and a spin-reorientation transition at approximately 95 K.

View Article and Find Full Text PDF

We report the first observation of the field distribution and flux-line lattice (FLL) depinning in the vortex-state (VS) of a type-II superconductor probed by conduction electron spin resonance (CESR). CESR was performed in MgB (2) (T(c) approximately 39 K) at 4.1 GHz (1455 Oe) and 9.

View Article and Find Full Text PDF

The exchange interactions in polycrystalline samples of Ca1-xLaxMnO3 (0.00< or =x< or =0.05) are studied by means of Raman scattering and electron paramagnetic resonance.

View Article and Find Full Text PDF