Publications by authors named "Reto Walser"

β-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase.

View Article and Find Full Text PDF

Structure-based drug discovery (SBDD) largely relies on structural information from X-ray crystallography because traditional NMR structure calculation methods are too time consuming to be aligned with typical drug discovery timelines. The recently developed NMR molecular replacement (MR) method dramatically reduces the time needed to generate ligand-protein complex structures using published structures (apo or holo) of the target protein and treating all observed NOEs as ambiguous restraints, bypassing the laborious process of obtaining sequence-specific resonance assignments for the protein target. We apply this method to two therapeutic targets, the bromodomain of TRIM24 and the second bromodomain of BRD4.

View Article and Find Full Text PDF

Biophysical methods are widely employed in academia and the pharmaceutical industry to detect and quantify weak molecular interactions. Such methods find broad application in fragment-based drug discovery (FBDD). In an FBDD campaign, a suitable affinity determination method is key to advancing a project beyond the initial screening phase.

View Article and Find Full Text PDF

Fragment-based drug discovery (FBDD) has come of age in the last decade with the FDA approval of four fragment-derived drugs. Biophysical methods are at the heart of hit discovery and validation in FBDD campaigns. The three most commonly used methods, thermal shift, surface plasmon resonance, and nuclear magnetic resonance, can be daunting for the novice user.

View Article and Find Full Text PDF

Metallothioneins (MTs) are cysteine-rich polypeptides that are naturally found coordinated to monovalent and/or divalent transition metal ions. Three metallothionein isoforms from the Roman snail are known. They differ in their physiological metal load and in their specificity for transition metal ions such as Cd (HpCdMT isoform) and Cu (HpCuMT isoform) or in the absence of a defined metal specificity (HpCd/CuMT isoform).

View Article and Find Full Text PDF

Cotranslational protein folding is a vectorial process, and for membrane proteins, N-terminal helical segments are the first that become available for membrane insertion. While structures of many G-protein coupled receptors (GPCRs) in various states have been determined, the details of their folding pathways are largely unknown. The seven transmembrane (TM) helices of GPCRs often contain polar residues within the hydrophobic core, and some of the helices in isolation are predicted to be only marginally stable in a membrane environment.

View Article and Find Full Text PDF

Plant homeodomains (PHD) and Bromo domains are both chromatin reader domains that recognise histone methylation degree and acetylation state, respectively. The tripartite motif protein TRIM24 is a multidomain protein carrying a PHD-Bromo motif at its C-terminus, through which it is able to bind to histone 3 (H3) N-terminal tails with a specific modification pattern, namely unmethylated at K4 and acetylated at K23 (H3-K4me0K23ac). Here we report the 1H, 13C and 15N backbone resonance assignment of this 23 kDa motif, which we have obtained by heteronuclear multidimensional NMR spectroscopy.

View Article and Find Full Text PDF

A local perturbation of a protein may lead to functional changes at some distal site. An example is the PDZ2 domain of human tyrosine phosphatase 1E, which shows an allosteric transition upon binding to a peptide ligand. Recently Buchli et al.

View Article and Find Full Text PDF

By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface.

View Article and Find Full Text PDF

The regulation of DNA double-strand break (DSB) repair by phosphorylation-dependent signaling pathways is crucial for the maintenance of genome stability; however, remarkably little is known about the molecular mechanisms by which phosphorylation controls DSB repair. Here, we show that PIN1, a phosphorylation-specific prolyl isomerase, interacts with key DSB repair factors and affects the relative contributions of homologous recombination (HR) and nonhomologous end-joining (NHEJ) to DSB repair. We find that PIN1-deficient cells display reduced NHEJ due to increased DNA end resection, whereas resection and HR are compromised in PIN1-overexpressing cells.

View Article and Find Full Text PDF

Despite recent advances no solution structure for a true G-protein coupled receptor (GPCR) is available today due to biochemical and spectroscopic problems. Herein we review our attempts to obtain assignments of GPCRs based on fragments comprising 2-3 transmembrane helices. The fragments are expressed in a heterologous system, and studied in detergent micelles using solution NMR spectroscopy.

View Article and Find Full Text PDF

We explore the capability of the azidohomoalanine (Aha) as a vibrational label for 2D IR spectroscopy to study the binding of the target peptide to the PDZ2 domain. The Aha label responds sensitively to its local environment and its peak extinction coefficient of 350-400 M(-1) cm(-1) is high enough to routinely measure it in the low millimolar concentration regime. The central frequency, inhomogeneous width and spectral diffusion times deduced from the 2D IR line shapes of the Aha label at various positions in the peptide sequence is discussed in relationship to the known X-ray structure of the peptide bound to the PDZ2 domain.

View Article and Find Full Text PDF

Owing to the difficulties in production and purification of G-protein-coupled receptors (GPCRs), relatively little structural information is available about this class of receptors. Here we aim at developing small chimeric proteins, displaying the extracellular ligand-binding motifs of a human GPCR, the Y receptor. This allows the study of ligand-receptor interactions in simplified systems.

View Article and Find Full Text PDF

Coagulation factor XIII (FXIII) stabilizes fibrin fibers and is therefore a major player in the maintenance of hemostasis. FXIII is activated by thrombin resulting in cleavage and release of the FXIII activation peptide (AP-FXIII). The objective of this study was to characterize the released AP-FXIII and determine specific features that may be used for its specific detection.

View Article and Find Full Text PDF

Binding of neurohormones from the NPY family to their receptors, the so-called Y receptors, that belong to the superfamily 1b of G-protein coupled receptors might include transient binding to the N-terminal domains of the receptors. Accordingly, we have studied structural features of the N-terminal domains from the Y1, Y2, Y4, and Y5 receptor subtypes (N-Y1, N-Y2, N-Y4, N-Y5). We developed efficient strategies for their recombinant expression.

View Article and Find Full Text PDF

Binding of peptide hormones to G protein-coupled receptors is believed to be mediated through formation of contacts of the ligands with residues of the extracellular loops of family 1 GPCRs. Here we have investigated whether additional binding sites exist within the N-terminal domain, as studied in the form of binding of peptides from the neuropeptide Y (NPY) family to the N terminus of the Y4 receptor (N-Y4). The N-terminal domain of the Y4 receptor has been expressed in isotopically enriched form and studied by solution NMR spectroscopy.

View Article and Find Full Text PDF

In this study, we were concerned with the structural role of the surface-exposed extracellular loops of the N-terminal transmembrane (TM) domain of OmpA. A variant of the TM domain of outer membrane protein A (OmpA) with all four such loops shortened, which we call the beta-barrel platform (BBP), was successfully refolded. This indicates that the removed parts of the surface-exposed loops indeed do not contain amino acid sequences critical for this membrane protein's refolding in vitro.

View Article and Find Full Text PDF

In this review a structural approach developed to answer the question whether hormones from the neuropeptide Y (NPY) family are recognized directly from solution or from the membrane-bound state is described. The chosen strategy is built onto a comparison of a set of peptides with well-known pharmacology and investigates whether similarities of structures of pharmacologically related peptides are higher in solution or in the membrane-bound state. Moreover, we have established the membrane-association mode of these peptides and contributed to our understanding of the structural features of these hormones both when placed in bulk solution and when bound to membranes.

View Article and Find Full Text PDF