Synchrotron radiation circular dichroism, Fourier transform infrared, and nuclear magnetic resonance spectroscopies, and small-angle x-ray scattering were used to monitor the reversible thermal unfolding of hen egg white lysozyme. The results were compared with crystal structures and high- and low-temperature structures derived from molecular-dynamics calculations. The results of both experimental and computational methods indicate that the unfolding process starts with the loss of β-structures followed by the reversible loss of helix content from ∼40% at 20°C to 27% at 70°C and ∼20% at 77°C, beyond which unfolding becomes irreversible.
View Article and Find Full Text PDFDynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz (1)H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.
View Article and Find Full Text PDFMutations in the PKD2 gene lead to the development of polycystic kidney disease (PKD). The PKD2 gene codes for polycystin-2, a cation channel with unknown function. The cytoplasmic, C-terminal domain interacts with a large number of proteins including mDia1, alpha-actinin, PIGEA-14, troponin, and tropomyosin.
View Article and Find Full Text PDFThe PKD1 and PKD2 genes are the genes that are mutated in patients suffering from autosomal dominant polycystic kidney disease. The human PKD2 gene codes for a 968-amino acid long membrane protein called polycystin-2 that represents a cation channel whose activity can be regulated by Ca(2+) ions. By CD, fluorescence, and NMR spectroscopy, we have studied a 117-amino acid-long fragment of the cytoplasmic domain of polycystin-2, polycystin-2-(680-796) that was proposed to contain a Ca(2+)-binding site.
View Article and Find Full Text PDFJ Phys Chem B
January 2009
Of all the nuclei in proteins, the nuclear magnetic resonance (NMR) chemical shifts of nitrogen are the theoretically least well understood. In this study, quantum chemical methods are used in combination with polarizable-continuum models in order to show that consideration of the effective electric field, including charge screening due to solvation, improves considerably the consistencies of statistical relationships between experimental and computed amide (15)N shifts between various sets of charged and uncharged oligopeptides and small organic molecules. A single conversion scheme between shielding parameters from first principles using density functional theory (DFT) and experimental shifts is derived that holds for all classes of compounds examined here.
View Article and Find Full Text PDFThe minimal model system to study the basic principles of protein folding is the hairpin. The formation of beta-hairpins, which are the basic components of antiparallel beta-sheets, has been studied extensively in the past decade, but much less is known about helical hairpins. Here, we probe hairpin formation between a polyproline type-II helix and an alpha-helix as present in the natural miniprotein peptide YY (PYY).
View Article and Find Full Text PDFThe Saccharomyces cerevisiae Cks protein Cks1 has a COOH-terminal glutamine-rich sequence not present in other homologues. Cks proteins domain swap to form dimers but unique to Cks1 is the anti-parallel arrangement of protomers within the dimer. Despite the differences in Cks1 compared with other Cks proteins, we find the domain swapping properties are very similar.
View Article and Find Full Text PDFOne of the hallmarks of modern science is technically controlled experimentation. In this paper, we underline how technical developments over the last 150 years have repeatedly created new horizons in amyloid research. The main focus is on chemical and biophysical analyses of amyloid fibrils in vivo and in vitro.
View Article and Find Full Text PDFProtein amyloid fibrils can be functionalized by coating the core protofilament with high concentrations of proteins and enzymes. This can be done elegantly by appending a functional domain to an amyloidogenic protein monomer, then assembling the monomers into a fibril. To display an array of biologically functional porphyrins on the surface of protein fibrils, we have fused the sequence of the small, soluble cytochrome b562 to an SH3 dimer sequence that can form classical amyloid fibrils rapidly under well-defined conditions.
View Article and Find Full Text PDFAggregation of the SH3 domain of the PI3 kinase, both as a single domain and as a tandem repeat in which the C terminus of one domain is linked to the N terminus of another by a flexible linker of ten glycine/serine residues, has been studied under a range of conditions in order to investigate the mechanism of protein aggregation and amyloid formation. The tandem repeat was found to form amyloid fibrils much more readily than the single domain under the acidic conditions used here, and the fibrils themselves have higher morphological homogeneity. The folding-unfolding transition of the PI3-SH3 domain shows two-state behaviour and is pH dependent; at pH 3.
View Article and Find Full Text PDFHormones and many other neurotransmitters, growth factors, odorant molecules, and light all present stimuli for a class of membrane-anchored receptors called G protein-coupled receptors (GPCRs). The GPCRs are the largest family of cell-surface receptors involved in signal transduction. About 1% of all known genes of Drosophila and more than 5% of the genes of Caenorhabditis elegans encode GPCRs.
View Article and Find Full Text PDFThe pancreatic polypeptide (PP), a 36-residue, C-terminally amidated polypeptide hormone is a member of the neuropeptide Y (NPY) family. Here, we have studied the structure and dynamics of bovine pancreatic polypeptide (bPP) when bound to DPC-micelles as a membrane-mimicking model as well as the dynamics of bPP in solution. The comparison of structure and dynamics of bPP in both states reveals remarkable differences.
View Article and Find Full Text PDFThe structure of [Ala(31), Pro(32)]-NPY, a neuropeptide Y mutant with selectivity for the NPY Y(5)-receptor (Cabrele, C., Wieland, H. A.
View Article and Find Full Text PDF