Publications by authors named "Resmi V Nair"

Fluorogenic probes that unmask fluorescence signals in response to bioorthogonal reactions are a powerful new addition to biological imaging. They can significantly reduce background fluorescence and minimize nonspecific signals, potentially enabling real-time, high-contrast imaging without the need to wash out excess fluorophores. While diverse classes of highly refined synthetic fluorophores are now readily available, integrating them into a bioorthogonal fluorogenic scheme still requires extensive design efforts and customized structural alterations to optimize quenching mechanisms for each specific fluorophore scaffold.

View Article and Find Full Text PDF

Photonic nanomaterials play a crucial role in facilitating the necessary signal for optical brain imaging, presenting a promising avenue for early diagnosis of brain-related disorders. However, the blood-brain barrier (BBB) presents a significant challenge, blocking the entry of most molecules or materials from the bloodstream into the brain. To overcome this, photonic nanocrystals in the form of gold clusters (LAuC) with size less than 3 nm, have been developed, with Levodopa conjugated to LAuC (Dop@LAuC) for targeted brain imaging.

View Article and Find Full Text PDF

Correction for 'An insight into the optical properties of a sub nanosize glutathione stabilized gold cluster' by Lakshmi V. Nair , , 2016, , 11286-11291, https://doi.org/10.

View Article and Find Full Text PDF

Ultrasmall metal nanoclusters are attractive for their size-dependent optical and electrochemical properties. Here, blue-emitting copper clusters stabilized with cetyltrimethylammonium bromide (CTAB) are synthesized using an electrochemical approach. The electrospray ionization (ESI) analysis reveals that the cluster has 13 copper atoms in the core.

View Article and Find Full Text PDF

Bacterial contamination is a serious concern for health and environmental safety. The major toxic effect arises from the endotoxin or lipopolysaccharide (LPS) attached to the cell wall of the gram-negative bacteria. Ultrasensitive endotoxin detection is of supreme importance in sustaining food, clinical and pharmaceutical safety.

View Article and Find Full Text PDF

Engineering different nanomaterials into a single functional material can impart unique properties of the parental nanoparticles, especially in the field of bio imaging and therapy. Gold nanomaterials having different sizes, shapes and dimensionalities exhibit exceptional properties apart from their non-toxicity and hence are strong candidates in the biomedical field. Designing a hybrid nanomaterial of two gold nanostructures retaining the individual properties of the parental nanomaterials is challenging.

View Article and Find Full Text PDF

Endotoxins or lipopolysaccharides (LPS) present in the outer layer of Gram-negative bacteria (GNB) are responsible for bacterial toxicity. It is an environmental hazard that everyone is exposed to daily to various extents. Due to its potent toxicity, quantitative detection with very high sensitivity is essential in the food, medical, and pharmaceutical industries.

View Article and Find Full Text PDF

The transition of conventional medicine to personalized medicine has paved the way for sensing new biomolecules. Consequently, this field attracted wide interest due to its capability to provide information on point of care basis. Multi-analyte sensors that emerged recently can perform quick and affordable analysis with minimum quantity of blood samples compared to traditional sensing of individual analytes.

View Article and Find Full Text PDF

Strong plasmon absorption in the near-infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR-PS combination.

View Article and Find Full Text PDF

Zinc, the essential trace element in human body exists either in the bound or free state, for both structural and functional roles. Insights on Zn distribution and its dynamics are essential in view of the fact that Zn dyshomeostasis is a risk factor for epileptic seizures, Alzheimer's disease, depression, etc. Herein, a bipyridine bridged bispyrrole (BP) probe is used for ratiometric imaging and quantification of Zn in hippocampal slices.

View Article and Find Full Text PDF

Cancer, a condition with uncontrolled cell division, is the second leading cause of death worldwide. The currently available techniques for the imaging and treatment of cancer have their own limitations and hence a combination of more than one modality is expected to increase the efficacy of both diagnosis and treatment. In the present study, we have developed a multimodal imaging and therapeutic system by incorporating a chemotherapeutic drug, mitoxantrone (MTX) onto PEG coated gold nanorods (GNR).

View Article and Find Full Text PDF

In this study, gold quantum clusters with distinct fluorescence properties were developed and their structural and physical behaviour was evaluated. The clusters were prepared by etching gold nanoparticles with glutathione. Three different Au33 clusters with emission profiles in the NIR region and one blue emitting cluster, Au8 were developed by varying the geometrical arrangement of atoms within the cluster.

View Article and Find Full Text PDF