γ-Tubulin ring complex (γ-TuRC), composed of γ-tubulin and multiple γ-tubulin complex proteins (GCPs), serves as the major microtubule nucleating complex in animal cells. However, several γ-TuRC-associated proteins have been shown to control its function. Centrosomal adaptor protein, TACC3, is one such γ-TuRC-interacting factor that is essential for proper mitotic spindle assembly across organisms.
View Article and Find Full Text PDFCentrioles are essential components of centrosome, the main microtubule-organizing center of animal cells required for robust spindle bipolarity [1, 2]. They are duplicated once during the cell cycle [3], and the duplication involves assembly of a cartwheel on the pre-existing centriole followed by assembly of triplet microtubules around the cartwheel [4, 5]. Although the molecular details of cartwheel formation are understood [6-13], the mechanisms initiating the formation of centriolar microtubules are not known.
View Article and Find Full Text PDFBackground: Astral microtubules emanating from the mitotic centrosomes play pivotal roles in defining cell division axis and tissue morphogenesis. Previous studies have demonstrated that human transforming acidic coiled-coil 3 (TACC3), the most conserved TACC family protein, regulates formation of astral microtubules at centrosomes in vertebrate cells by affecting γ-tubulin ring complex (γ-TuRC) assembly. However, the molecular mechanisms underlying such function were not completely understood.
View Article and Find Full Text PDF