Publications by authors named "Resmi Anand"

While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating tiny gel-like structures called microgels to help with repairing complex body parts like teeth and gums.
  • They used different methods to make these microgels and tested how well they worked, including their size and how they released medicine.
  • The results showed the microgels were successfully made, could carry a special drug for tooth repair, and released it over a week, which could help with future medical treatments.
View Article and Find Full Text PDF

Hypothesis: Calcium carbonate (CaCO) nanoparticles could have great potential for contrast-enhanced ultrasound imaging (CEUS) due to their gas-generating properties and sensitivity to physiological conditions. However, the use of nano CaCO for biomedical applications requires the assistance of stabilizers to control the size and avoid the fast dissolution/recrystallization of the particles when exposed to aqueous conditions.

Experiments: Herein, we report the stabilization of nano CaCO using lignin, and synthesized core-shell amorphous CaCO-lignin nanoparticles (LigCC NPs) with a diameter below 100 nm.

View Article and Find Full Text PDF

Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin-hyaluronan dialdehyde (Gel-HDA) Schiff's polymer, and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting.

View Article and Find Full Text PDF

Dentoalveolar tissue engineering is an emerging yet challenging field, considering the lack of suitable materials and difficulty to produce patient-specific hydrogel scaffolds. The present paper aims to produce a 3D printable and tuneable biomaterial by copolymerizing a synthesized water-soluble chitosan derivative called maleic anhydride grafted chitosan (MA-C) with gelatin using genipin, a natural crosslinking agent. Development and testing of this material for 3D printing, degradation, and swelling demonstrated the ability to fabricate scaffolds with controlled physical properties based on pre-determined designs.

View Article and Find Full Text PDF

Cryogels, a subset of hydrogels, have recently drawn attention for cartilage tissue engineering due to its inherent microporous architecture and good mechanical properties. In this study a dual crosslinked pullulan-gelatin cryogel (PDAG) scaffold was synthesized by crosslinking gelatin with oxidized pullulan by Schiff's base reaction followed by cryogelation. Chondrocytes seeded within the PDAG scaffolds and cultured for 21 ddemonstrated enhanced cell proliferation, enhanced production of cartilage-specific extracellular matrix and up-regulated sulfated glycosaminoglycan without altering the articular chondrocyte phenotype.

View Article and Find Full Text PDF

Asymmetric flow field-flow fractionation (AF4) coupled with UV-Vis spectroscopy, multi-angle light scattering (MALS) and refractive index (RI) detection has been applied for the characterization of MIL-100(Fe) nanoMOFs (metal-organic frameworks) loaded with nucleoside reverse transcriptase inhibitor (NRTI) drugs for the first time. Empty nanoMOFs and nanoMOFs loaded with azidothymidine derivatives with three different degrees of phosphorylation were examined: azidothymidine (AZT, native drug), azidothymidine monophosphate (AZT-MP), and azidothymidine triphosphate (AZT-TP). The particle size distribution and the stability of the nanoparticles when interacting with drugs have been determined in a time frame of 24 h.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are coordination polymers of interest for biomedical applications. Of particular importance, nanoparticles made of iron(III) trimesate (MIL-100, MIL standing for Material Institut Lavoisier) (nanoMOFs) can be conveniently synthesised under mild and green conditions. They were shown to be biodegradable, biocompatible and efficient to encapsulate a variety of active molecules.

View Article and Find Full Text PDF

Doxorubicin (DOX) entrapment in porous Fe(III)-trimesate metal organic frameworks (MIL-100(Fe)) nanoparticles was investigated in neutral Tris buffer via UV-vis absorption, circular dichroism (CD), and fluorescence. The binding constants and the absolute spectra of the DOX-MIL-100(Fe) complexes were determined via absorption and fluorescence titrations. A binding model where DOX associates as monomer to the dehydrated Fe3O (OH)(H2O)2 [(C6H3)(CO2)3]2 structural unit in 1:1 stoichiometry, with apparent association constant of (1.

View Article and Find Full Text PDF

Encapsulation of azidothymidine (AZT) or its phosphorylated derivatives (AZT-MP and AZT-TP) has been performed using nanoparticles of the porous crystalline iron(iii) trimesate metal-organic framework MIL-100(Fe). The number of phosphate groups per nucleoside analogue has a high impact on the drug loading capacity, and their interaction with the Lewis acid sites from the nanoMOFs is also discussed through a combination of techniques such as UV-vis absorption, circular dichroism, isothermal titration calorimetry, HPLC and molecular simulations. Finally, the effect of the differences in terms of host-guest interactions is discussed through the release in physiological buffers of AZT, AZT-MP and AZT-TP.

View Article and Find Full Text PDF

Two citric acid crosslinked γ-cyclodextrin oligomers (pγ-CyD) with a MW of 21-33 kDa and 10-15 γ-CyD units per molecule were prepared by following green chemistry methods and were fully characterized. The non-covalent association of doxorubicin (DOX) with these macromolecules was investigated in neutral aqueous medium by means of circular dichroism (CD), UV-vis absorption and fluorescence. Global analysis of multiwavelength spectroscopic CD and fluorescence titration data, taking into account the DOX monomer-dimer equilibrium, evidenced the formation of 1 : 1 and 1 : 2 pγ-CyD unit-DOX complexes.

View Article and Find Full Text PDF

Nanoscale mesoporous iron carboxylates metal-organic frameworks (nanoMOFs) have recently emerged as promising platforms for drug delivery, showing biodegradability, biocompatibility and important loading capability of challenging highly water-soluble drugs such as azidothymidine tryphosphate (AZT-TP). In this study, nanoMOFs made of iron trimesate (MIL-100) were able to act as efficient molecular sponges, quickly adsorbing up to 24 wt% AZT-TP with entrapment efficiencies close to 100%, without perturbation of the supramolecular crystalline organization. These data are in agreement with molecular modelling predictions, indicating maximal loadings of 33 wt% and preferential location of the drug in the large cages.

View Article and Find Full Text PDF

The association of doxorubicin (DOX) and artemisinin (ART) to a β-CyD-epichlorohydrin crosslinked polymer (pβ-CyD), organized in nanoparticles of ca. 15 nm size, was investigated in neutral aqueous medium by circular dichroism (CD), UV-vis absorption and fluorescence. The stability constants and the absolute CD spectra of the drug complexes were determined by global analysis of multiwavelength data from spectroscopic titrations.

View Article and Find Full Text PDF