The widespread adoption and commercialization of lateral flow assays (LFAs) for clinical diagnosis have been hindered by limitations in sensitivity, specificity, and the absence of quantitative data. To address these challenges, we developed aptamer-architectured gold nanoparticles as nanozymes that catalytically convert -phenylenediamine (PPD) into Bandrowski's base (BB), thereby amplifying signal strength and sensitivity. The physiochemical properties of the nanozymes were characterized and their specific binding efficiency was demonstrated using experimental studies.
View Article and Find Full Text PDFAccurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer's disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ, Aβ, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms.
View Article and Find Full Text PDFIn the quest for advanced memristor technologies, this study introduces the synthesis of delta-formamidinium lead iodide (δ-FAPbI) nanoparticles (NPs) and their self-assembly into nanorods (NRs). The formation of these NRs is facilitated by iodide vacancies, promoting the fusion of individual NPs at higher concentrations. Notably, these NRs exhibit robust stability under ambient conditions, a distinctive advantage attributed to the presence of capping ligands and a crystal lattice structured around face-sharing octahedra.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive complex neurodegenerative disorder affecting millions of individuals worldwide. Currently, there is no effective treatment for AD. AD is characterized by the deposition of amyloid plaques/fibrils.
View Article and Find Full Text PDFHybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enablefluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately.
View Article and Find Full Text PDFBrain-inspired computation that mimics the coordinated functioning of neural networks through multitudes of synaptic connections is deemed to be the future of computation to overcome the classical von Neumann bottleneck. The future artificial intelligence circuits require scalable electronic synapse (e-synapses) with very high bit densities and operational speeds. In this respect, nanostructures of two-dimensional materials serve the purpose and offer the scalability of the devices in lateral and vertical dimensions.
View Article and Find Full Text PDFChemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself.
View Article and Find Full Text PDF