Publications by authors named "Reshmy R"

In the study, Poly Vinyl Alcohol (PVA) films engineered with the nanoparticles and essential oils have been developed as efficient alternative to the currently used food packaging materials. For this, impact of cinnamon essential oil (CEO), on the metabolomic profile of Staphylococcus aureus, Escherichia coli and Aspergillus flavus was analysed. Subsequently, PVA based nanocomposite films CEO, zinc oxide nanoparticles (ZnONPs), and nanocellulose (NC) were synthesised and characterized by FT-IR analysis.

View Article and Find Full Text PDF

Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals.

View Article and Find Full Text PDF

Nanocellulose, a subset of nanomaterials made from cellulose, one of the world's most plentiful natural resources, has the potential to offer environmentally friendly, renewable, and sustainable building blocks with enhanced properties for a variety of applications in the nanotechnology field. This article describes the impact of glutaraldehyde (GA) on glycerol plasticized nanocellulose derived from I. coccinea L.

View Article and Find Full Text PDF

The recent scenario has witnessed the augmenting demand for energy precursors primarily from renewable ways in respect of the natural environment. The high energy along with the cost-intensive nature of the conventional approaches directed the researchers to find out an effective and promising method that principally uses the microwave for the pretreatment. The formation of heat energy from electromagnetic energy through polar particle rotation would be noted to be the core principle of the aforesaid effective approach.

View Article and Find Full Text PDF

Current experimental evidence has revealed that pomegranate peel is a significant source of essential bio compounds, and many of them can be transformed into valorized products. Pomegranate peel can also be used as feedstock to produce fuels and biochemicals. We herein review this pomegranate peel conversion technology and the prospective valorized product that can be synthesized from this frequently disposed fruit waste.

View Article and Find Full Text PDF
Article Synopsis
  • * This review discusses SCB's composition, life cycle analysis, and pretreatment methods for efficient conversion into valuable products, including biofuels and biogas.
  • * SCB has potential applications in creating chemicals like carboxymethyl cellulose, pigments, and acids, contributing to energy sustainability and meeting global demands.
View Article and Find Full Text PDF
Article Synopsis
  • Endocrine Disrupting Chemicals (EDCs) are structurally diverse but can severely disrupt hormonal systems in both humans and wildlife, leading to serious health issues including growth disorders and cancer.
  • Traditional methods for addressing EDC pollution include physico-chemical and enzymatic approaches, but there's a growing focus on innovative technologies like genetically engineered microbes and gene editing for more effective remediation.
  • The review highlights the importance of sustainable strategies in combating EDCs, advocating for stricter regulations and combined methods to minimize environmental impact and promote better health outcomes.
View Article and Find Full Text PDF

Nanocellulose are nano-sized components which are biodegradable, biocompatible and renewable. It offers mechanical strength and chemical stability in plants and bacteria. The environmental contamination is reduced by employing various bioremediation techniques which usesmicroorganisms like algae, bacteria and fungi as bio-adsorbents.

View Article and Find Full Text PDF

Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential.

View Article and Find Full Text PDF

Nanocellulose fibers are widely acknowledged as a more sustainable alternative to polyimide and polyethylene terephthalate-based plastic films derived from petrochemicals. Cellulose is also utilised in packaging, tissue engineering, electronic, optical, and sensor applications, pharmaceutical applications, cosmetic applications, insulation, water filtration, and hygiene applications, as well as vascular grafts. In the present study to improve the tensile and thermal properties of cellulose nanofibers, polyethylene glycol (PEG 600) with varying concentrations was produced by solvent casting and chemically crosslinked with glutaraldehyde (GA).

View Article and Find Full Text PDF

Bacterial nanocellulose (BNC) has been emerging as a biomaterial of considerable significance in a number of industrial sectors because of its remarkable physico-chemical and biological characteristics. High capital expenses, manufacturing costs, and a paucity of some well-scalable methods, all of which lead to low BNC output in commercial scale, are major barriers that must be addressed. Advances in production methods, including bioreactor technologies, static intermittent, and semi-continuous fed batch technologies, and innovative outlay substrates, may be able to overcome the challenges to BNC production at the industrial scale.

View Article and Find Full Text PDF

Lignocellulosic biomass has been emerging as a biorefinery precursor for variety of biofuels, platform chemicals and biomaterials because of its specific surface morphology, exceptional physical, chemical and biological characteristics. The selection of proper raw materials, integration of nano biotechnological aspects, and designing of viable processes are important to attain a cost-effective route for the development of valuable end products. Lignocellulose-based materials can prove to be outstanding in terms of techno-economic viability, as well as being environmentally friendly and reducing effluent load.

View Article and Find Full Text PDF

Lignin is the world's second most prevalent biomaterial, but its effective value-added product valorization methods are still being developed. The most common preparation processes for converting lignin to platform chemicals and biofuels are fragmentation and depolymerization. Due to its structural diversity, fragmentation generally produces a variety of products, necessitating tedious separation and purifying methods to isolate the desired products.

View Article and Find Full Text PDF

Filamentous fungi possess versatile capabilities for synthesizing a variety of valuable bio compounds, including enzymes, organic acids and small molecule secondary metabolites. The advancements of genetic and metabolic engineering techniques and the availability of sequenced genomes discovered their potential as expression hosts for recombinant protein production. Remarkably, plant-biomass degrading filamentous fungi show the unique capability to decompose lignocellulose, an extremely recalcitrant biopolymer.

View Article and Find Full Text PDF

Heavy metal pollution generated by urban and industrial activities has become a major global concern due to its high toxicity, minimal biodegradability, and persistence in the food chain. These are the severe pollutants that have the potential to harm humans and the environment as a whole. Mercury, chromium, copper, zinc, cadmium, lead, and nickel are the most often discharged hazardous heavy metals.

View Article and Find Full Text PDF

Bisphenol A (or BPA) is a toxic endocrine disrupting chemical that is released into the environment through modern manufacturing practices. BPA can disrupt the production, function and activity of endogenous hormones causing irregularity in the hypothalamus-pituitary-gonadal glands and also the pituitary-adrenal function. BPA has immuno-suppression activity and can downregulate T cells and antioxidant genes.

View Article and Find Full Text PDF

The gut microbiome, often referred to as "super organ", comprises up to a hundred trillion microorganisms, and the species diversity may vary from person to person. They perform a decisive role in diverse biological functions related to metabolism, immunity and neurological responses. However, the microbiome is sensitive to environmental pollutants, especially heavy metals.

View Article and Find Full Text PDF

Nanobiocatalysts are one of the most promising biomaterials produced by synergistically integrating advanced biotechnology and nanotechnology. These have a lot of potential to improve enzyme stability, function, efficiencyand engineering performance in bioprocessing. Functional nanostructures have been used to create nanobiocatalystsbecause of their specific physicochemical characteristics and supramolecular nature.

View Article and Find Full Text PDF

The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes.

View Article and Find Full Text PDF

Wastewater management has significant interest worldwide to establish viable treatment techniques to ensure the availability of clean water. The specialities of nanocellulose for this particular application is due to their high aspect ratio and accessibility of plenty of -OH groups for binding with dyes, heavy metals and other pollutants. This review aggregates the application of nanocellulose for wastewater treatment particularly as adsorbents of dyes and heavy metals, and also as membranes for filtering various other contaminants including microbes.

View Article and Find Full Text PDF

Maintaining the safety and quality of food are major concerns while developing biomaterial based food packaging. It offers a longer shelf-life as well as protection and quality control to the food based on international standards. Nano-biotechnology contributes to a far extent to make advanced packaging by developing multifunctional biomaterials for potential applications providing smarter materials to consumers.

View Article and Find Full Text PDF

Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics.

View Article and Find Full Text PDF

Biocatalysts have wider applications in various industries. Biocatalysts are generating bigger attention among researchers due to their unique catalytic properties like activity, specificity and stability. However the industrial use of many enzymes is hindered by low catalytic efficiency and stability during industrial processes.

View Article and Find Full Text PDF

Pure nanocellulose was extracted from agricultural waste material namely jackfruit (Artocarpus heterophyllus) peel through acid hydrolysis. The extraction method utilizes soapnut solution as an eco-friendly bleaching agent in order to avoid environment polluting chlorinated chemicals. Various thin films were prepared by solvent casting nanocellulose and different plasticizers namely glycerol, polyethylene glycol, polyvinyl alcohol, triethyl citrate along with novel filler, Boswellia serrata commonly known as frankincense.

View Article and Find Full Text PDF