White matter (WM) atrophy is a significant feature of Huntington disease (HD), although its aetiology and early pathological manifestations remain poorly defined. In this study, we aimed to characterize WM-related features in the transgenic YAC128 and BACHD models of HD. Using diffusion tensor magnetic resonance imaging (DT-MRI), we demonstrate that microstructural WM abnormalities occur from an early age in YAC128 mice.
View Article and Find Full Text PDFPerfusion is an important biomarker of tissue function and has been associated with tumor pathophysiology such as angiogenesis and hypoxia. Arterial spin labeling (ASL) MRI allows noninvasive and quantitative imaging of perfusion; however, the application in mouse xenograft tumor models has been challenging due to the low sensitivity and high perfusion heterogeneity. In this study, flow-sensitive alternating inversion recovery (FAIR) ASL was optimized for a mouse xenograft tumor.
View Article and Find Full Text PDFA polydisulfide MRI contrast agent was obtained by grafting diethylenetriaminepentaacetic (DTPA) to disulfide-containing poly(amido amine)s-graft-poly(ethylene glycol) (PEG) followed by Gd(iii) complexation. Self-assembly of the MRI contrast agent obtained occurs in aqueous solution forming nanosized micelles with PEG shells and ionic complex cores. The chemistry and structures of the MRI contrast agent and assembly were characterized using NMR, GPC and DLS.
View Article and Find Full Text PDFAngiogenesis plays a major role in tumor growth and metastasis, with tumor perfusion regarded as a marker for angiogenesis. To evaluate antiangiogenic treatment response in vivo, we investigated arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure tumor perfusion quantitatively. Chronic and 24-h acute treatment responses to bevacizumab were assessed by ASL and dynamic-contrast-enhanced (DCE) MRI in the A498 xenograft mouse model.
View Article and Find Full Text PDFInformation on renal perfusion is essential for the diagnosis and prognosis of kidney function. Quantification using gadolinium chelates is limited as a result of filtration through renal glomeruli and safety concerns in patients with kidney dysfunction. Arterial spin labeling MRI is a noninvasive technique for perfusion quantification that has been applied to humans and animals.
View Article and Find Full Text PDFThe effects of plasma lipid overload on pancreatic islet function and on mineral imbalance are issues under debate. However, the outcomes may be biased by the different metabolisms of different species. This prospective study evaluated whether a high fat diet intake changed the distribution of physiologically relevant elements within pancreatic endocrine and exocrine tissues of Sprague Dawley rats and New Zealand White rabbits.
View Article and Find Full Text PDFOxidative stress has been implicated in the etiology of atherosclerosis and even held responsible for plaque calcification. Transition metals such as iron aggravate oxidative stress. To understand the relation between calcium and iron in atherosclerotic lesions, a sensitive technique is required that is quantitatively accurate and avoids isolation of plaques or staining/fixing tissue, because these processes introduce contaminants and redistribute elements within the tissue.
View Article and Find Full Text PDFAll clinically-approved and many novel gadolinium (Gd)-based contrast agents used to enhance signal intensity in magnetic resonance imaging (MRI) are optically silent. To verify MRI results, a "gold standard" that can map and quantify Gd down to the parts per million (ppm) levels is required. Nuclear microscopy is a relatively new technique that has this capability and is composed of a combination of three ion beam techniques: scanning transmission ion microscopy, Rutherford backscattering spectrometry, and particle induced X-ray emission used in conjunction with a high energy proton microprobe.
View Article and Find Full Text PDFThere is considerable interest in the role of metals such as iron, copper, and zinc in amyloid plaque formation in Alzheimer's disease. However to convincingly establish their presence in plaques in vivo, a sensitive technique is required that is both quantitatively accurate and avoids isolation of plaques or staining/fixing brain tissue, since these processes introduce contaminants and redistribute elements within the tissue. Combining the three ion beam techniques of scanning transmission ion microscopy, Rutherford back scattering spectrometry and particle induced X-ray emission in conjunction with a high energy (MeV) proton microprobe we have imaged plaques in freeze-dried unstained brain sections from CRND-8 mice, and simultaneously quantified iron, copper, and zinc.
View Article and Find Full Text PDFDeveloping atherosclerotic lesions in hypercholesterolemic rabbits are depleted in zinc, while iron accumulates. This study examined the influence of zinc supplementation on the development of atherosclerosis and used isotope dilution gas chromatography-mass spectrometry techniques to measure biomarkers of oxidative lipid damage in atherosclerotic rabbit aorta. Our previous method for F(2)-isoprostane measurement was adapted to include the quantitation of cholesterol oxidation products in the same sample.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2007
Iron levels increase in atherosclerotic lesions in cholesterol fed-rabbits and play a role in atherosclerosis. We investigated whether copper also rises. Male New Zealand White rabbits were fed high-cholesterol diets for 8 weeks.
View Article and Find Full Text PDFDeveloping atherosclerotic plaques in cholesterol-fed rabbits are enriched in iron but depleted in zinc. In order to examine further the role of zinc, New Zealand White rabbits were fed a high-cholesterol 1% (w/w) diet with zinc (1 g/kg) supplementation for 8 weeks. After the 8-week period, the average atherosclerotic lesion cross-sectional areas in the aortas of the animals fed with the zinc supplement were significantly decreased (1.
View Article and Find Full Text PDFSeveral epidemiological studies have suggested that increased iron stores are associated with increased atherosclerotic events. In order to test the hypothesis that decreasing the vascular level of iron slows lesion growth, we examined the effects of the iron chelator Desferal (72 mg/kg/day, 5 days/week) on atherosclerosis and lesion iron content in cholesterol-fed New Zealand White rabbits. Rabbits were fed with a 1% w/w cholesterol diet for either 8 weeks (and for the last 5 weeks injected daily with Desferal) or 12 weeks (and for the last 9 weeks injected with Desferal).
View Article and Find Full Text PDF