Theranostic nanoparticles based on biocompatible mineral compositions can significantly improve the translational potential of image guided cancer nano-therapy. Here, we report development of a single-phase calcium phosphate biomineral nanoparticle (nCP) with dual-mode magnetic resonance contrast (T1-T2) together with radiofrequency (RF) mediated thermal response suitable for image-guided RF ablation of cancer. The nanoparticles (NP) are engineered to provide dual MR contrast by an optimized doping concentration (4.
View Article and Find Full Text PDFLocalized and controlled delivery of chemotherapeutics directly in brain-tumor for prolonged periods may radically improve the prognosis of recurrent glioblastoma. Here, we report a unique method of nanofiber by fiber controlled delivery of anti-cancer drug, Temozolomide, in orthotopic brain-tumor for one month using flexible polymeric nano-implant. A library of drug loaded (20 wt%) electrospun nanofiber of PLGA-PLA-PCL blends with distinct in vivo brain-release kinetics (hours to months) were numerically selected and a single nano-implant was formed by co-electrospinning of nano-fiber such that different set of fibres releases the drug for a specific periods from days to months by fiber-by-fiber switching.
View Article and Find Full Text PDFRadiofrequency ablation (RFA) and doxorubicin (Dox) chemotherapy are separately approved for liver cancer therapy; however, both have limited success in the clinic due to suboptimal/nonuniform heating and systemic side effects, respectively. Here, we report a biodegradable nanoparticle (NP) system showing excellent RF hyperthermic response together with the ability to locally deliver Dox in the liver under RF trigger and control. The nanosystem was prepared by doping a clinically permissible dose (∼4.
View Article and Find Full Text PDFThe morbidity and the mortality associated with Staphylococcus aureus and S. epidermidis infections have greatly increased due to the rapid emergence of highly virulent and antibiotic resistant strains. Development of a vaccine-based therapy is greatly desired.
View Article and Find Full Text PDFCombination of three imaging techniques such as nuclear, magnetic and near-infrared fluorescence can aid in improved diagnosis of disease by synergizing specific advantages of each of these techniques such as deep tissue penetration of radiation signals, anatomical and functional details provided by magnetic contrast and better spatial resolution of optical signals. In the present work, we report the development of a multimodal contrast agent based on calcium phosphate nanoparticles (nCP), doped with both indocyanine green (ICG) and Gadolinium (Gd(3+)), and labeled with 99m-Technetium-methylene diphosphonate ((99m)Tc-MDP) for combined optical, magnetic and nuclear imaging. In order to obtain the desired tri-modal contrast properties, the concentrations of ICG, Gd(3+) and (99m)Tc were optimized at ∼0.
View Article and Find Full Text PDF