The RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3).
View Article and Find Full Text PDFMembers of the ADAR family of double-stranded RNA-binding proteins regulate one of the most abundant RNA modifications in humans, the deamination of adenosine to inosine. Several transcriptome-wide studies have been carried out to identify RNA targets of the active deaminases ADAR1 and ADAR2. However, our understanding of ADAR3, the brain-specific deaminase-deficient ADAR family member, is limited to a few transcripts.
View Article and Find Full Text PDFThe past decade has seen an exponential increase in the identification of individual nucleobases that undergo base conversion and/or modification in transcriptomes. While the enzymes that catalyze these types of changes have been identified, the global interactome of these modifiers is still largely unknown. Furthermore, in some instances, redundancy among a family of enzymes leads to an inability to pinpoint the protein responsible for modifying a given transcript merely from high-throughput sequencing data.
View Article and Find Full Text PDF