Purpose: The emerging online adaptive radiation therapy (OART) treatment strategy based on cone beam computed tomography allows for real-time replanning according to a patient's current anatomy. However, implementing this procedure requires a new approach across the patient's care path and monitoring of the "black box" adaptation process. This study identifies high-risk failure modes (FMs) associated with AI-driven OART and proposes an interdisciplinary workflow to mitigate potential medical errors from highly automated processes, enhance treatment efficiency, and reduce the burden on clinicians.
View Article and Find Full Text PDFPurpose: State-of-the-art automated segmentation methods achieve exceptionally high performance on the Brain Tumor Segmentation (BraTS) challenge, a dataset of uniformly processed and standardized magnetic resonance generated images (MRIs) of gliomas. However, a reasonable concern is that these models may not fare well on clinical MRIs that do not belong to the specially curated BraTS dataset. Research using the previous generation of deep learning models indicates significant performance loss on cross-institutional predictions.
View Article and Find Full Text PDFPurpose: Radiotherapy treatment planning is a complex process with multiple, dependent steps involving an interdisciplinary patient care team. Effective communication and real-time tracking of resources and care path activities are key for clinical efficiency and patient safety.
Materials And Methods: We designed and implemented a secure, interactive web-based dashboard for patient care path, clinical workflow, and resource utilization management.
J Contemp Brachytherapy
December 2020
Purpose: AccuBoost is a complex non-invasive brachytherapy procedure for breast treatment. This technique requires a radiation oncologist to manually select applicator grid position and size by overlaying transparencies over a mammographic image to encompass surgical clips and resected tumor bed. An algorithm was developed in MATLAB™ to automate the selection of round applicators based on surgical clip position.
View Article and Find Full Text PDFPurpose: The objective of this study was to formalize and automate quality assurance (QA) in radiation oncology. Quality assurance in radiation oncology entails a multistep verification of complex, personalized radiation plans to treat cancer involving an interdisciplinary team and high technology, multivendor software and hardware systems. We addressed the pretreatment physics chart review (TPCR) using methods from graph theory and constraint programming to study the effect of dependencies between variables and automatically identify logical inconsistencies and how they propagate.
View Article and Find Full Text PDFObjectives: We retrospectively analyzed data of the BECOME trial to investigate whether serial administration of triple-dose (3-dose) gadopentetate dimeglumine would result in the development of T1 signal-to-noise (S/N) changes in the cranial diploic space and whether S/N changes correlated with on-study hypophosphatemia.
Methods: Signal intensity analysis was performed on the first year's data of the BECOME trial using 3-dose Gd (14 months, maximum number of doses, 39, mean: 36). Routine blood and urine tests were obtained each month for safety monitoring.
Objectives: Gadolinium deposition is widely believed to occur, but questions regarding accumulation pattern and permanence remain. We conducted a retrospective study of intracranial signal changes on monthly triple-dose contrast-enhanced magnetic resonance imaging (MRI) examinations from the previously published Betaseron vs. Copaxone in Multiple Sclerosis With Triple-Dose Gadolinium and 3-Tesla MRI Endpoints Trial (N = 67) to characterize the dynamics of gadolinium deposition in several deep brain nuclei and track persistence versus washout of gadolinium deposition on long-term follow-up (LTFU) examinations (N = 28) obtained approximately 10 years after enrollment in the Betaseron vs.
View Article and Find Full Text PDFPurpose: We present and evaluate a fully automated 2D-3D intensity-based registration framework using a single limited field-of-view (FOV) 2D kV radiograph and a 3D kV CBCT for 3D estimation of patient setup errors during brain radiotherapy.
Methods: We evaluated two similarity measures, the Pearson correlation coefficient on image intensity values (ICC) and maximum likelihood measure with Gaussian noise (MLG), derived from the statistics of transmission images. Pose determination experiments were conducted on 2D kV radiographs in the anterior-posterior (AP) and left lateral (LL) views and 3D kV CBCTs of an anthropomorphic head phantom.
Objective: The objective of the present study is to identify novel, time-indexed imaging biomarkers of epileptogenesis in mesial temporal lobe epilepsy (MTLE).
Methods: We used high-resolution brain diffusion tensor imaging (DTI) of the translationally relevant methionine sulfoximine (MSO) brain infusion model of MTLE. MSO inhibits astroglial glutamine synthetase, which is deficient in the epileptogenic hippocampal formation of patients with MTLE.
Background: Intensity modulated arc therapy (IMAT) has been widely adopted for Stereotactic Body Radiotherapy (SBRT) for lung cancer. While treatment dose is optimized and calculated on a static Computed Tomography (CT) image, the effect of the interplay between the target and linac multi-leaf collimator (MLC) motion is not well described and may result in deviations between delivered and planned dose. In this study, we investigated the dosimetric consequences of the inter-play effect on target and organs at risk (OAR) by simulating dynamic dose delivery using dynamic CT datasets.
View Article and Find Full Text PDFPurpose: Spatial information is usually neglected in mathematical models of radiation-induced toxicity. In the presence of inhomogeneous dose distributions produced by intensity modulated radiation therapy (IMRT) and volumetric arc therapy, this may be a limitation. We present a model to quantify the spatial characteristics of the dose distribution on the rectum through the quantification of the distribution of distances between dose points on the surface of the rectum in three-dimensions.
View Article and Find Full Text PDFPurpose: 4D positron emission tomography and computed tomography (PET∕CT) can be used to reduce motion artifacts by correlating the raw PET data with the respiratory cycle. The accuracy of each PET phase is dependent on the reproducibility and consistency of the breathing cycle during acquisition. The objective of this study is to evaluate the impact of breathing amplitude and phase irregularities on the quantitative accuracy of 4D PET standardized uptake value (SUV) measurements.
View Article and Find Full Text PDFPurpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities.
Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise.
In prostate radiotherapy, setup errors with respect to the patient's bony anatomy can be reduced by aligning 2D megavoltage (MV) portal images acquired during treatment to a reference 3D kilovoltage (kV) CT acquired for treatment planning purposes. The purpose of this study was to evaluate a fully automated 2D-3D registration algorithm to quantify setup errors in 3D through the alignment of line-enhanced portal images and digitally reconstructed radiographs computed from the CT. The line-enhanced images were obtained by correlating the images with a filter bank of short line segments, or "sticks" at different orientations.
View Article and Find Full Text PDFWe seek to identify dosimetric and anatomic indicators of late rectal toxicity in prostate cancer patients treated with intensity modulated radiation therapy (IMRT). Data from 49 patients sampled from 698 patients treated for clinically localized prostate cancer at the Memorial Sloan-Kettering Cancer Center with IMRT to a dose of 81 Gy were analyzed. The end point of the study was late Grade 2 or worse rectal toxicity within 30 months of treatment.
View Article and Find Full Text PDFIn many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data.
View Article and Find Full Text PDFThe objective of this study was to develop a fully automated two-dimensional (2D)-three-dimensional (3D) registration framework to quantify setup deviations in prostate radiation therapy from cone beam CT (CBCT) data and a single AP radiograph. A kilovoltage CBCT image and kilovoltage AP radiograph of an anthropomorphic phantom of the pelvis were acquired at 14 accurately known positions. The shifts in the phantom position were subsequently estimated by registering digitally reconstructed radiographs (DRRs) from the 3D CBCT scan to the AP radiographs through the correlation of enhanced linear image features mainly representing bony ridges.
View Article and Find Full Text PDF