Publications by authors named "Reshalaiti Hailili"

Effective removal of kinetically inert dilute nitrogen oxide (NO, ppb) without NO emission is still a challenging topic in environmental pollution control. One effective approach to reducing the harm of NO is the construction of photocatalysts with diversified microstructures and atomic arrangements that could promote adsorption, activation, and complete removal of NO without yielding secondary pollution. Herein, microstructure regulations of ZnO photocatalysts were attempted by altering the reaction temperature and alkalinity in a unique ionic liquid-based solid-state synthesis and further investigated for the removal of dilute NO upon light irradiation.

View Article and Find Full Text PDF

Successful construction of heterojunction can improve the utilization efficiency of solar light by broadening the absorption range, facilitating charge-carrier separation, promoting carrier transportation and influencing surface-interface reaction. Herein, visible-light-driven AgBr was deposited on the surface of lamellar BiVOwhich was prepared by a facile hydrothermal process to improve charge carrier separation, and subsequent photocatalytic effectiveness. The catalyst with an optimal AgBr/BiVOratio exhibited a superbly enhanced photocatalytic decolorization ability (about 6.

View Article and Find Full Text PDF

2, 4-dichlorophenol (2, 4-DCP) is considered to be a highly toxic, mutagenic, and possibly carcinogenic pollutant. This study is focused on the electrochemical oxidation of 2, 4-DCP on nanostructured 3D-porous Ti/Sb-SnO-Gr anodes, with the aim of presenting a comprehensive elucidation of mineralization process through the investigation of influential kinetics, the reactivity of hydroxyl radical's and analysis of intermediates. High efficiency was achieved at pH of 3 using NaSO electrolytes at a current density of 30 mA cm.

View Article and Find Full Text PDF

A planar tetracoordinated oxygen containing a homochiral metal-organic framework (MOF) has been synthesized and characterized that can be used as a new chiral stationary phase in high-performance liquid chromatography to efficiently separate racemates such as pharmaceutically important (±)-ibuprofen and (±)-1-phenyl-1,2-ethanediol.

View Article and Find Full Text PDF

A perfectly aligned 63 helical tubular cuprous bromide single crystal has been synthesized and characterized, which can selectively decompose negatively charged dyes of Methyl Orange (MO) and Kermes Red (KR), and the photocatalytic efficiency is higher than that of nanosized (∼25 nm) TiO2 and ZnO. The direction and magnitude of the dipole moments as well as the band structure were calculated to reveal high photocatalytic efficiency. Moreover, luminescence studies indicate that the CuBr tube materials show very strong yellowish green emissions in the solid state and emulsion even at room temperature, and exhibit extremely high detection sensitivity towards nitro-explosives via fluorescence quenching.

View Article and Find Full Text PDF

A noncentrosymmetric nitrate, Pb16(OH)16(NO3)16, has been obtained using a hydrothermal method. It is constructed of [Pb4(OH)4](4+) cubanes and nitrate form the overall three-dimensional structure via weak Pb-O bonds. Powder second-harmonic generation (SHG) using the Kurtz-Perry technique shows that Pb16(OH)16(NO3)16 is type I phase-matchable, and the measured SHG coefficient was 3.

View Article and Find Full Text PDF