Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.
View Article and Find Full Text PDFObjective: The aim of this study was to investigate the effect of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) on the human MCF7 breast cancer cell proliferation that have been considered to contain limited CSC population and its association with the expression of OCT4 and ALDH1 stemness markers.
Methods: EVs were successfully isolated from the conditioned medium of umbilical cord MSCs using size exclusion chromatography. The isolated EV fraction was verified under a transmission electron microscope (TEM).
Objective: To investigate the auto-induction of transforming growth factor-b1 (TGF-β1) in breast cancer stem cells (BCSCs) and its effect on cell viability and stemness.
Methods: Human BCSCs (aldehyde dehydrogenase positive; ALDH+) were grown in serum-free Dulbecco's Modified Eagle Medium/Nutrient Mixture F12 (DMEM/F12) and treated for periods of 1, 2 and 4 hours with 0.1 ng/ml recombinant human TGF-β1 protein (rhTGF-β1).
Breast cancer stem cells (BCSCs) express high levels of the anti-apoptotic protein, survivin. This study aimed to discover a natural active compound with anti-cancer properties that targeted survivin in human breast cancer stem cells. From the seven examined compounds, andrographolide was selected as a lead compound through in silico molecular docking with survivin, caspase-9, and caspase-3.
View Article and Find Full Text PDFBackground: Despite recent progress in molecular-targeted therapies, breast cancer remains the primary leading cause of cancer related death among women worldwide. Breast cancer stem cells (BCSCs) are believed to be responsible for therapy resistance and cancer recurrence. We recently demonstrated that human BCSCs (CD24-/CD44+) could survive better than their counterpart non-BCSCs (CD24-/CD44-) when treated with rotenone, possibly due to lower levels of reactive oxygen species (ROS) production, high expression of antioxidant manganese superoxide dismutase (MnSOD), and anti-apoptotic survivin.
View Article and Find Full Text PDFBackground: Various chemical agents have been used as an adjuvant treatment for giant cell tumor (GCT). However, the comparative effect of these chemicals remains unclear.
Methods: Multinucleated and spindle cells from cultured GCT patients, characterized by Nanog and Oct4 expression with RT-PCR, were directly administered, in vitro, with concentrations of 1%, 3%, and 5% of HO and 75%, 85%, and 95% of ethanol for 10 minutes and concentrations of 0.
Background: It has been widely reported that breast cancer aggressiveness may be driven by breast cancer stem cells (BCSCs). BCSCs display stemness properties that include self-renewal, tumourigenicity and pluripotency. The regulation of gene expression may have important roles in BCSC stemness and aggressiveness.
View Article and Find Full Text PDF